1
|
Zhong Z, Li Y, Sun Q, Chen D. Tiny but mighty: Diverse functions of uORFs that regulate gene expression. Comput Struct Biotechnol J 2024; 23:3771-3779. [PMID: 39525088 PMCID: PMC11550727 DOI: 10.1016/j.csbj.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Upstream open reading frames (uORFs) are critical cis-acting regulators of downstream gene expression. Specifically, uORFs regulate translation by disrupting translation initiation or mediating mRNA decay. We herein summarize the effects of several uORFs that regulate gene expression in microbes to illustrate the detailed mechanisms mediating uORF functions. Microbes are ideal for uORF studies because of their prompt responses to stimuli. Recent studies revealed uORFs are ubiquitous in higher eukaryotes. Moreover, they influence various physiological processes in mammalian cells by regulating gene expression, mostly at the translational level. Research conducted using rapidly evolving methods for ribosome profiling combined with protein analyses and computational annotations showed that uORFs in mammalian cells control gene expression similar to microbial uORFs, but they also have unique tumorigenesis-related roles because of their protein-encoding capacities. We briefly introduce cutting-edge research findings regarding uORFs in mammalian cells.
Collapse
Affiliation(s)
- Zhenfei Zhong
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
- Southwest United Graduate School, Kunming 650500, China
| |
Collapse
|
2
|
Deng X, Yu YV, Jin YN. Non-canonical translation in cancer: significance and therapeutic potential of non-canonical ORFs, m 6A-modification, and circular RNAs. Cell Death Discov 2024; 10:412. [PMID: 39333489 PMCID: PMC11437038 DOI: 10.1038/s41420-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Translation is a decoding process that synthesizes proteins from RNA, typically mRNA. The conventional translation process consists of four stages: initiation, elongation, termination, and ribosome recycling. Precise control over the translation mechanism is crucial, as dysregulation in this process is often linked to human diseases such as cancer. Recent discoveries have unveiled translation mechanisms that extend beyond typical well-characterized components like the m7G cap, poly(A)-tail, or translation factors like eIFs. These mechanisms instead utilize atypical elements, such as non-canonical ORF, m6A-modification, and circular RNA, as key components for protein synthesis. Collectively, these mechanisms are classified as non-canonical translations. It is increasingly clear that non-canonical translation mechanisms significantly impact the various regulatory pathways of cancer, including proliferation, tumorigenicity, and the behavior of cancer stem cells. This review explores the involvement of a variety of non-canonical translation mechanisms in cancer biology and provides insights into potential therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiaoyi Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Youngnam N Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Jürgens L, Wethmar K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers (Basel) 2022; 14:6031. [PMID: 36551517 PMCID: PMC9776223 DOI: 10.3390/cancers14246031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.
Collapse
Affiliation(s)
| | - Klaus Wethmar
- University Hospital Münster, Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, 48149 Münster, Germany
| |
Collapse
|
5
|
Manske F, Ogoniak L, Jürgens L, Grundmann N, Makałowski W, Wethmar K. The new uORFdb: integrating literature, sequence, and variation data in a central hub for uORF research. Nucleic Acids Res 2022; 51:D328-D336. [PMID: 36305828 PMCID: PMC9825577 DOI: 10.1093/nar/gkac899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023] Open
Abstract
Upstream open reading frames (uORFs) are initiated by AUG or near-cognate start codons and have been identified in the transcript leader sequences of the majority of eukaryotic transcripts. Functionally, uORFs are implicated in downstream translational regulation of the main protein coding sequence and may serve as a source of non-canonical peptides. Genetic defects in uORF sequences have been linked to the development of various diseases, including cancer. To simplify uORF-related research, the initial release of uORFdb in 2014 provided a comprehensive and manually curated collection of uORF-related literature. Here, we present an updated sequence-based version of uORFdb, accessible at https://www.bioinformatics.uni-muenster.de/tools/uorfdb. The new uORFdb enables users to directly access sequence information, graphical displays, and genetic variation data for over 2.4 million human uORFs. It also includes sequence data of >4.2 million uORFs in 12 additional species. Multiple uORFs can be displayed in transcript- and reading-frame-specific models to visualize the translational context. A variety of filters, sequence-related information, and links to external resources (UCSC Genome Browser, dbSNP, ClinVar) facilitate immediate in-depth analysis of individual uORFs. The database also contains uORF-related somatic variation data obtained from whole-genome sequencing (WGS) analyses of 677 cancer samples collected by the TCGA consortium.
Collapse
Affiliation(s)
- Felix Manske
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Lynn Ogoniak
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Lara Jürgens
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Münster 48149, Germany
| | - Norbert Grundmann
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Wojciech Makałowski
- Correspondence may also be addressed to Wojciech Makałowski. Tel: +49 2518353006;
| | - Klaus Wethmar
- To whom correspondence should be addressed. Tel: +49 2518347587; Fax: +49 2518347588;
| |
Collapse
|
6
|
Bottorff TA, Park H, Geballe AP, Subramaniam AR. Translational buffering by ribosome stalling in upstream open reading frames. PLoS Genet 2022; 18:e1010460. [PMID: 36315596 PMCID: PMC9648851 DOI: 10.1371/journal.pgen.1010460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Upstream open reading frames (uORFs) are present in over half of all human mRNAs. uORFs can potently regulate the translation of downstream open reading frames through several mechanisms: siphoning away scanning ribosomes, regulating re-initiation, and allowing interactions between scanning and elongating ribosomes. However, the consequences of these different mechanisms for the regulation of protein expression remain incompletely understood. Here, we performed systematic measurements on the uORF-containing 5' UTR of the cytomegaloviral UL4 mRNA to test alternative models of uORF-mediated regulation in human cells. We find that a terminal diproline-dependent elongating ribosome stall in the UL4 uORF prevents decreases in main ORF protein expression when ribosome loading onto the mRNA is reduced. This uORF-mediated buffering is insensitive to the location of the ribosome stall along the uORF. Computational kinetic modeling based on our measurements suggests that scanning ribosomes dissociate rather than queue when they collide with stalled elongating ribosomes within the UL4 uORF. We identify several human uORFs that repress main ORF protein expression via a similar terminal diproline motif. We propose that ribosome stalls in uORFs provide a general mechanism for buffering against reductions in main ORF translation during stress and developmental transitions.
Collapse
Affiliation(s)
- Ty A. Bottorff
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Human Biology and Clinical Research Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
mRNA Metabolism in Health and Disease. Biomedicines 2022; 10:biomedicines10092262. [PMID: 36140363 PMCID: PMC9496247 DOI: 10.3390/biomedicines10092262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
|
8
|
Causier B, Hopes T, McKay M, Paling Z, Davies B. Plants utilise ancient conserved peptide upstream open reading frames in stress-responsive translational regulation. PLANT, CELL & ENVIRONMENT 2022; 45:1229-1241. [PMID: 35128674 PMCID: PMC9305500 DOI: 10.1111/pce.14277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/08/2023]
Abstract
The regulation of protein synthesis plays an important role in the growth and development of all organisms. Upstream open reading frames (uORFs) are commonly found in eukaryotic messenger RNA transcripts and typically attenuate the translation of associated downstream main ORFs (mORFs). Conserved peptide uORFs (CPuORFs) are a rare subset of uORFs, some of which have been shown to conditionally regulate translation by ribosome stalling. Here, we show that Arabidopsis CPuORF19, CPuORF46 and CPuORF47, which are ancient in origin, regulate translation of any downstream ORF, in response to the agriculturally significant environmental signals, heat stress and water limitation. Consequently, these CPuORFs represent a versatile toolkit for inducible gene expression with broad applications. Finally, we note that different classes of CPuORFs may operate during distinct phases of translation, which has implications for the bioengineering of these regulatory factors.
Collapse
Affiliation(s)
- Barry Causier
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Tayah Hopes
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Mary McKay
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Zachary Paling
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Brendan Davies
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
9
|
Nelde A, Flötotto L, Jürgens L, Szymik L, Hubert E, Bauer J, Schliemann C, Kessler T, Lenz G, Rammensee HG, Walz JS, Wethmar K. Upstream open reading frames regulate translation of cancer-associated transcripts and encode HLA-presented immunogenic tumor antigens. Cell Mol Life Sci 2022; 79:171. [PMID: 35239002 PMCID: PMC8894207 DOI: 10.1007/s00018-022-04145-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Upstream open reading frames (uORFs) represent translational control elements within eukaryotic transcript leader sequences. Recent data showed that uORFs can encode for biologically active proteins and human leukocyte antigen (HLA)-presented peptides in malignant and benign cells suggesting their potential role in cancer cell development and survival. However, the role of uORFs in translational regulation of cancer-associated transcripts as well as in cancer immune surveillance is still incompletely understood. METHODS We examined the translational regulatory effect of 29 uORFs in 13 cancer-associated genes by dual-luciferase assays. Cellular expression and localization of uORF-encoded peptides (uPeptides) were investigated by immunoblotting and immunofluorescence-based microscopy. Furthermore, we utilized mass spectrometry-based immunopeptidome analyses in an extensive dataset of primary malignant and benign tissue samples for the identification of naturally presented uORF-derived HLA-presented peptides screening for more than 2000 uORFs. RESULTS We provide experimental evidence for similarly effective translational regulation of cancer-associated transcripts through uORFs initiated by either canonical AUG codons or by alternative translation initiation sites (aTISs). We further demonstrate frequent cellular expression and reveal occasional specific cellular localization of uORF-derived peptides, suggesting uPeptide-specific biological implications. Immunopeptidome analyses delineated a set of 125 naturally presented uORF-derived HLA-presented peptides. Comparative immunopeptidome profiling of malignant and benign tissue-derived immunopeptidomes identified several tumor-associated uORF-derived HLA ligands capable to induce multifunctional T cell responses. CONCLUSION Our data provide direct evidence for the frequent expression of uPeptides in benign and malignant human tissues, suggesting a potentially widespread function of uPeptides in cancer biology. These findings may inspire novel approaches in direct molecular as well as immunotherapeutic targeting of cancer-associated uORFs and uPeptides.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany
| | - Lea Flötotto
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Lara Jürgens
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Laura Szymik
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Elvira Hubert
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Torsten Kessler
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Robert Bosch Center for Tumor Diseases (RBCT), 70376, Stuttgart, Germany.
| | - Klaus Wethmar
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany.
| |
Collapse
|