1
|
Tachibana S, Hayashi S, Ikuta K, Anjiki K, Onoi Y, Suda Y, Wada K, Maeda T, Saito A, Tsubosaka M, Kamenaga T, Kuroda Y, Nakano N, Matsumoto T, Hosooka T, Ogawa W, Kuroda R. Downregulation of Krüppel-like factor 15 expression delays endochondral bone ossification during fracture healing. Bone 2024; 190:117302. [PMID: 39437873 DOI: 10.1016/j.bone.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The role of Krüppel-like zinc finger transcription factor 15 (KLF15) in endochondral ossification during fracture healing remains unexplored. In this study, we aimed to elucidate the impact of KLF15 in a mouse model of tibial transverse fracture. METHODS We created tamoxifen-inducible, cartilage-specific KLF15 knockout mice (KLF15 KO). KLF15 fl/fl Col2-CreERT mice from the same litters as the KLF15 KO mice, but not treated with 4-hydroxytamoxifen, were used as controls (CT). At 10 weeks, male KLF15 KO and CT mice underwent tibial fracture followed by intramedullary nailing. Both groups were administered tamoxifen at days 0, 3, and 7 after surgery. The tibiae were harvested on post-surgery days 7, 10, and 14 for radiological assessment using micro-computed tomography. Histological staining (Safranin-O) and immunohistochemistry for KLF15, SOX9, Indian hedgehog (IHH), RUNX2, and Osterix were performed. Additionally, cartilage from mouse fetus was cultured for qRT-PCR and western blot analyses of KLF15, SOX9, IHH, Col2, RUNX2, Osterix, TGF-β, SMAD3, and phosphor-SMAD3. RESULTS The radiological assessment revealed that immature callus formation was delayed in KLF15 KO, compared with that in CT, peaking on day 14 compared with that on day 10 in CT. KLF15 KO mice exhibited delayed fracture healing and reduced Safranin-O staining at days 7 and 10 post-surgery. The ratio of cells positive for KLF15 and SOX9 was significantly lower in KLF15 KO than in CT, whereas the ratios for IHH, RUNX2, and Osterix showed no significant difference. RT-PCR revealed reduced expression of KLF15, SOX9, and COL2, with no significant changes in IHH, Osterix, RUNX2, TGF-β, and SMAD3. Western blot analysis indicated decreased SMAD3 phosphorylation in KLF15 KO mice. CONCLUSION KLF15 regulates SOX9 via the TGF-β-SMAD3-SOX9 pathway, independent of IHH, in endochondral ossification. The KLF15 deficiency decreases SOX9 expression through reduced SMAD3 phosphorylation, subsequently delaying fracture healing.
Collapse
Affiliation(s)
- Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Saito
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Castañón-Cortés LG, Bravo-Vázquez LA, Santoyo-Valencia G, Medina-Feria S, Sahare P, Duttaroy AK, Paul S. Current advances in the development of microRNA-integrated tissue engineering strategies: a cornerstone of regenerative medicine. Front Bioeng Biotechnol 2024; 12:1484151. [PMID: 39479296 PMCID: PMC11521876 DOI: 10.3389/fbioe.2024.1484151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Regenerative medicine is an innovative scientific field focused on repairing, replacing, or regenerating damaged tissues and organs to restore their normal functions. A central aspect of this research arena relies on the use of tissue-engineered scaffolds, which serve as structural supports that mimic the extracellular matrix, providing an environment that orchestrates cell growth and tissue formation. Remarkably, the therapeutic efficacy of these scaffolds can be improved by harnessing the properties of other molecules or compounds that have crucial roles in healing and regeneration pathways, such as phytochemicals, enzymes, transcription factors, and non-coding RNAs (ncRNAs). In particular, microRNAs (miRNAs) are a class of tiny (20-24 nt), highly conserved ncRNAs that play a critical role in the regulation of gene expression at the post-transcriptional level. Accordingly, miRNAs are involved in a myriad of biological processes, including cell differentiation, proliferation, and apoptosis, as well as tissue regeneration, angiogenesis, and osteogenesis. On this basis, over the past years, a number of research studies have demonstrated that miRNAs can be integrated into tissue-engineered scaffolds to create advanced therapeutic platforms that precisely modulate cellular behavior and offer a controlled and targeted release of miRNAs to optimize tissue repair and regeneration. Therefore, in this current review, we discuss the most recent advances in the development of miRNA-loaded tissue-engineered scaffolds and provide an overview of the future outlooks that should be aborded in this area of study in order to lay the groundwork for the clinical translation of these tissue engineering approaches.
Collapse
Affiliation(s)
| | | | | | - Sara Medina-Feria
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- School of Engineering and Sciences, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
3
|
Borciani G, Montalbano G, Perut F, Ciapetti G, Baldini N, Vitale-Brovarone C. Osteoblast and osteoclast activity on collagen-based 3D printed scaffolds enriched with strontium-doped bioactive glasses and hydroxyapatite nanorods for bone tissue engineering. Biomed Mater 2024; 19:065007. [PMID: 39173660 DOI: 10.1088/1748-605x/ad72c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Bone tissue engineering (BTE) aims to promote bone regeneration by means of the synergistic effect of biomaterials, cells, and other factors, as potential alternative to conventional treatments for bone fractures. To this aim, a composite material was developed, based on collagen type I, strontium-enriched mesoporous bioactive glasses, and hydroxyapatite nanorods as bioactive and biomimetic components. Nanostructured scaffolds were 3D printed and subsequently chemically crosslinked with genipin to improve mechanical properties and stability. The developed nanostructured system was maintained in culture until 3 weeks with a co-culture of human bone cells to provide anex vivomodel of bone microenvironment and examine the cellular crosstalk and signaling pathways through paracrine cell activities. Human osteoblasts (OBs), derived from trabecular bone, and human osteoclast precursors (OCs), isolated from buffy coat samples were involved, with OBs seeded on the scaffold and OC precursors seeded in a transwell device. When compared to the material without inorganic components, the bioactive and biomimetic scaffold positively influenced cell proliferation and cell metabolic activity, boosting alkaline phosphatase activity of OBs, and reducing OC differentiation. Thus, the bioactive and biomimetic system promoted an enhanced cellular response, highlighting its potential application in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gabriela Ciapetti
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
4
|
Nain A, Chakraborty S, Barman SR, Gavit P, Indrakumar S, Agrawal A, Lin ZH, Chatterjee K. Progress in the development of piezoelectric biomaterials for tissue remodeling. Biomaterials 2024; 307:122528. [PMID: 38522326 DOI: 10.1016/j.biomaterials.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Piezoelectric biomaterials have demonstrated significant potential in the past few decades to heal damaged tissue and restore cellular functionalities. Herein, we discuss the role of bioelectricity in tissue remodeling and explore ways to mimic such tissue-like properties in synthetic biomaterials. In the past decade, biomedical engineers have adopted emerging functional biomaterials-based tissue engineering approaches using innovative bioelectronic stimulation protocols based on dynamic stimuli to direct cellular activation, proliferation, and differentiation on engineered biomaterial constructs. The primary focus of this review is to discuss the concepts of piezoelectric energy harvesting, piezoelectric materials, and their application in soft (skin and neural) and hard (dental and bone) tissue regeneration. While discussing the prospective applications as an engineered tissue, an important distinction has been made between piezoceramics, piezopolymers, and their composites. The superiority of piezopolymers over piezoceramics to circumvent issues such as stiffness mismatch, biocompatibility, and biodegradability are highlighted. We aim to provide a comprehensive review of the field and identify opportunities for the future to develop clinically relevant and state-of-the-art biomaterials for personalized and remote health care.
Collapse
Affiliation(s)
- Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| | - Srishti Chakraborty
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Snigdha Roy Barman
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Pratik Gavit
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sushma Indrakumar
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Akhilesh Agrawal
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipe, 10617, Taiwan.
| | - Kaushik Chatterjee
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India; Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
5
|
Sattar MA, Lingens LF, Guillaume VGJ, Goetzl R, Beier JP, Ruhl T. Association between Donor Age and Osteogenic Potential of Human Adipose Stem Cells in Bone Tissue Engineering. Curr Issues Mol Biol 2024; 46:1424-1436. [PMID: 38392210 PMCID: PMC10887920 DOI: 10.3390/cimb46020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose stem cells (ASCs) have multilineage differentiation capacity and hold great potential for regenerative medicine. Compared to bone marrow-derived mesenchymal stem cells (bmMSCs), ASCs are easier to isolate from abundant sources with significantly higher yields. It is generally accepted that bmMSCs show age-related changes in their proliferation and differentiation potentials, whereas this aspect is still controversial in the case of ASCs. In this review, we evaluated the existing data on the effect of donor age on the osteogenic potential of human ASCs. Overall, a poor agreement has been achieved because of inconsistent findings in the previous studies. Finally, we attempted to delineate the possible reasons behind the lack of agreements reported in the literature. ASCs represent a heterogeneous cell population, and the osteogenic potential of ASCs can be influenced by donor-related factors such as age, but also gender, lifestyle, and the underlying health and metabolic state of donors. Furthermore, future studies should consider experimental factors in in vitro conditions, including passaging, cryopreservation, culture conditions, variations in differentiation protocols, and readout methods.
Collapse
Affiliation(s)
- Md Abdus Sattar
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, 52074 Aachen, Germany
| | - Lara F Lingens
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, 52074 Aachen, Germany
| | - Vincent G J Guillaume
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, 52074 Aachen, Germany
| | - Rebekka Goetzl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, 52074 Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, 52074 Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, 52074 Aachen, Germany
| |
Collapse
|
6
|
Ren Y, Chu X, Senarathna J, Bhargava A, Grayson WL, Pathak AP. Multimodality imaging reveals angiogenic evolution in vivo during calvarial bone defect healing. Angiogenesis 2024; 27:105-119. [PMID: 38032405 PMCID: PMC10964991 DOI: 10.1007/s10456-023-09899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
The healing of calvarial bone defects is a pressing clinical problem that involves the dynamic interplay between angiogenesis and osteogenesis within the osteogenic niche. Although structural and functional vascular remodeling (i.e., angiogenic evolution) in the osteogenic niche is a crucial modulator of oxygenation, inflammatory and bone precursor cells, most clinical and pre-clinical investigations have been limited to characterizing structural changes in the vasculature and bone. Therefore, we developed a new multimodality imaging approach that for the first time enabled the longitudinal (i.e., over four weeks) and dynamic characterization of multiple in vivo functional parameters in the remodeled vasculature and its effects on de novo osteogenesis, in a preclinical calvarial defect model. We employed multi-wavelength intrinsic optical signal (IOS) imaging to assess microvascular remodeling, intravascular oxygenation (SO2), and osteogenesis; laser speckle contrast (LSC) imaging to assess concomitant changes in blood flow and vascular maturity; and micro-computed tomography (μCT) to validate volumetric changes in calvarial bone. We found that angiogenic evolution was tightly coupled with calvarial bone regeneration and corresponded to distinct phases of bone healing, such as injury, hematoma formation, revascularization, and remodeling. The first three phases occurred during the initial two weeks of bone healing and were characterized by significant in vivo changes in vascular morphology, blood flow, oxygenation, and maturity. Overall, angiogenic evolution preceded osteogenesis, which only plateaued toward the end of bone healing (i.e., four weeks). Collectively, these data indicate the crucial role of angiogenic evolution in osteogenesis. We believe that such multimodality imaging approaches have the potential to inform the design of more efficacious tissue-engineering calvarial defect treatments.
Collapse
Affiliation(s)
- Yunke Ren
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinying Chu
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg, Baltimore, MD, 21205, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Arvind P Pathak
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg, Baltimore, MD, 21205, USA.
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Electrical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
La Manna F, Hanhart D, Kloen P, van Wijnen AJ, Thalmann GN, Kruithof-de Julio M, Chouvardas P. Molecular profiling of osteoprogenitor cells reveals FOS as a master regulator of bone non-union. Gene 2023; 874:147481. [PMID: 37182560 DOI: 10.1016/j.gene.2023.147481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Despite the advances in bone fracture treatment, a significant fraction of fracture patients will develop non-union. Most non-unions are treated with surgery since identifying the molecular causes of these defects is exceptionally challenging. In this study, compared with marrow bone, we generated a transcriptional atlas of human osteoprogenitor cells derived from healing callus and non-union fractures. Detailed comparison among the three conditions revealed a substantial similarity of callus and nonunion at the gene expression level. Nevertheless, when assayed functionally, they showed different osteogenic potential. Utilizing longitudinal transcriptional profiling of the osteoprogenitor cells, we identified FOS as a putative master regulator of non-union fractures. We validated FOS activity by profiling a validation cohort of 31 tissue samples. Our work identified new molecular targets for non-union classification and treatment while providing a valuable resource to better understand human bone healing biology.
Collapse
Affiliation(s)
- Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Daniel Hanhart
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Kloen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | | - George N Thalmann
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Panagiotis Chouvardas
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Al-Shalawi FD, Mohamed Ariff AH, Jung DW, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, Al-Osaimi MO. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel) 2023; 15:2601. [PMID: 37376247 PMCID: PMC10303232 DOI: 10.3390/polym15122601] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Patients suffering bone fractures in different parts of the body require implants that will enable similar function to that of the natural bone that they are replacing. Joint diseases (rheumatoid arthritis and osteoarthritis) also require surgical intervention with implants such as hip and knee joint replacement. Biomaterial implants are utilized to fix fractures or replace parts of the body. For the majority of these implant cases, either metal or polymer biomaterials are chosen in order to have a similar functional capacity to the original bone material. The biomaterials that are employed most often for implants of bone fracture are metals such as stainless steel and titanium, and polymers such as polyethene and polyetheretherketone (PEEK). This review compared metallic and synthetic polymer implant biomaterials that can be employed to secure load-bearing bone fractures due to their ability to withstand the mechanical stresses and strains of the body, with a focus on their classification, properties, and application.
Collapse
Affiliation(s)
- Faisal Dakhelallah Al-Shalawi
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Azmah Hanim Mohamed Ariff
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
- Research Center Advanced Engineering Materials and Composites (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Dong-Won Jung
- Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Mohd Khairol Anuar Mohd Ariffin
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Collin Looi Seng Kim
- Department of Orthopaedic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Dermot Brabazon
- Advanced Manufacturing Research Centre, and Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, D09 V209 Dublin 9, Ireland;
| | - Maha Obaid Al-Osaimi
- Department of Microbiology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
9
|
Zhang X, Sun J, Zhou M, Li C, Zhu Z, Gan X. The role of mitochondria in the peri-implant microenvironment. Exp Physiol 2023; 108:398-411. [PMID: 36648334 PMCID: PMC10103875 DOI: 10.1113/ep090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we consider the key role of mitochondria in the peri-implant milieu, including the regulation of mitochondrial reactive oxygen species and mitochondrial metabolism in angiogenesis, the polarization of macrophage immune responses, and bone formation and bone resorption during osseointegration. What advances does it highlight? Mitochondria contribute to the behaviours of peri-implant cell lines based on metabolic and reactive oxygen species signalling modulations, which will contribute to the research field and the development of new treatment strategies for improving implant success. ABSTRACT Osseointegration is a dynamic biological process in the local microenvironment adjacent to a bone implant, which is crucial for implant performance and success of the implant surgery. Recently, the role of mitochondria in the peri-implant microenvironment during osseointegration has gained much attention. Mitochondrial regulation has been verified to be essential for cellular events in osseointegration and as a therapeutic target for peri-implant diseases in the peri-implant microenvironment. In this review, we summarize our current knowledge of the key role of mitochondria in the peri-implant milieu, including the regulation of mitochondrial reactive oxygen species and mitochondrial metabolism in angiogenesis, the polarization of macrophage immune responses, and bone formation and resorption during osseointegration, which will contribute to the research field and the development of new treatment strategies to improve implant success. In addition, we indicate limitations in our current understanding of the regulation of mitochondria in osseointegration and suggest topics for further study.
Collapse
Affiliation(s)
- Xidan Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiyu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Min Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Chen Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhuoli Zhu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xueqi Gan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
10
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
11
|
Melatonin Repairs Osteoporotic Bone Defects in Iron-Overloaded Rats through PI3K/AKT/GSK-3 β/P70S6k Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7718155. [PMID: 36703914 PMCID: PMC9873465 DOI: 10.1155/2023/7718155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/05/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
It was found recently that iron overload can cause osteoporosis in rats. Through in vitro and in vivo experimentations, the purpose of the present study was to validate and confirm the inhibitory effects of melatonin on iron death of osteoporosis and its role in bone microstructure improvements. Melatonin (100 mol/L) was administered to MC3T3-E1 cells induced by iron overload in vitro for 48 hours. The expression of cleaved caspase-3 and cleaved PARP and the production of ROS (reactive oxygen species) and mitochondrial damage were all exacerbated by iron overload. On the other hand, melatonin restored these impacts in MC3T3-E1 cells produced by iron overload. By evaluating the expression of PI3K/AKT/GSK-3β/P70S6k signaling pathway-related proteins (RUNX2, BMP2, ALP, and OCN) using RT-PCR and Western blot, osteogenic-related proteins were identified. Alizarin red S and alkaline phosphatase were utilized to evaluate the osteogenic potential of MC3T3-E1 cells. Melatonin significantly improved the osteogenic ability and phosphorylation rates of PI3K, AKT, GSK-3β, and P70S6k in iron overload-induced MC3T3-E1 cells. In vivo, melatonin treated iron overload-induced osteoporotic bone defect in rats. Rat skeletal microstructure was observed using micro-CT and bone tissue pathological section staining. ELISA was utilized to identify OCN, PINP, CTX-I, and SI in the serum of rats. We discovered that melatonin increased bone trabecular regeneration and repair in osteoporotic bone defects caused by iron overload. In conclusion, melatonin enhanced the osteogenic ability of iron overload-induced MC3T3-E1 cells by activating the PI3K/AKT/GSK-3β/P70S6k signaling pathway and promoting the healing of iron overload-induced osteoporotic bone defects in rats.
Collapse
|
12
|
Kikuchi K, Haneda M, Hayashi S, Maeda T, Nakano N, Kuroda Y, Tsubosaka M, Kamenaga T, Fujita M, Ikuta K, Anjiki K, Tachibana S, Onoi Y, Matsumoto T, Kuroda R. P21 deficiency exhibits delayed endochondral ossification during fracture healing. Bone 2022; 165:116572. [PMID: 36180020 DOI: 10.1016/j.bone.2022.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Endochondral ossification is a complex biological phenomenon involving a variety of factors and cells. Cyclin-dependent kinase inhibitor 1 (p21) inhibits cell cycle progression and is affected by external stress. We recently reported that embryonic endochondral ossification is unaffected by endogenous p21 deficiency. In this study, we evaluated whether p21 expression affects endochondral ossification during fracture healing. METHODS Tibial fractures were introduced into p21 knockout (p21-/-) (n = 24) and wild-type C57BL/6 (p21+/+) (n = 24) mice at age 10 weeks. Fracture healing was evaluated using radiological, histological, and immunohistochemical (IHC) analyses. The effect of p21 small interfering RNA (siRNA) on ATDC5 cells was assessed in vitro. RESULTS The Allen score for fracture healing was lower in p21-/- mice than in p21+/+ mice. In addition, p21-/- mice exhibited larger calluses and lower bone mineral density. IHC analyses showed that p21-/- mice exhibited delayed endochondral ossification via the Ihh-Runx2-Osterix pathway in vivo. Down-regulation of p21 expression in ATDC5 cells delayed endochondral ossification in vitro. CONCLUSIONS p21 deficiency leads to delayed endochondral ossification by attenuating the Ihh-Runx2-Osterix pathway in vivo, and p21 deficiency in hypertrophic chondrocytes causes delayed differentiation of hypertrophic chondrocytes in vitro. p21 plays a role in endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiko Haneda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Antiosteoporotic Nanohydroxyapatite Zoledronate Scaffold Seeded with Bone Marrow Mesenchymal Stromal Cells for Bone Regeneration: A 3D In Vitro Model. Int J Mol Sci 2022; 23:ijms23115988. [PMID: 35682677 PMCID: PMC9180852 DOI: 10.3390/ijms23115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Bisphosphonates are widely employed drugs for the treatment of pathologies with high bone resorption, such as osteoporosis, and display a great affinity for calcium ions and apatitic substrates. Here, we aimed to investigate the potentiality of zoledronate functionalized hydroxyapatite nanocrystals (HAZOL) to promote bone regeneration by stimulating adhesion, viability, metabolic activity and osteogenic commitment of human bone marrow derived mesenchymal stromal cells (hMSCs). Methods: we adopted an advanced three-dimensional (3D) in vitro fracture healing model to study porous scaffolds: hMSCs were seeded onto the scaffolds that, after three days, were cut in halves and unseeded scaffolds were placed between the two halves. Scaffold characterization by X-ray diffraction, transmission and scanning electron microscopy analyses and cell morphology, viability, osteogenic differentiation and extracellular matrix deposition were evaluated after 3, 7 and 10 days of culture. Results: Electron microscopy showed a porous and interconnected structure and a uniform cell layer spread onto scaffolds. Scaffolds were able to support cell growth and cells progressively colonized the whole inserts in absence of cytotoxic effects. Osteogenic commitment and gene expression of hMSCs were enhanced with higher expressions of ALPL, COL1A1, BGLAP, RUNX2 and Osterix genes. Conclusion: Although some limitations affect the present study (e.g., the lack of longer experimental times, of mechanical stimulus or pathological microenvironment), the obtained results with the adopted experimental setup suggested that zoledronate functionalized scaffolds (GHAZOL) might sustain not only cell proliferation, but positively influence osteogenic differentiation and activity if employed in bone fracture healing.
Collapse
|
14
|
Tanaka M, Izumiya M, Haniu H, Ueda K, Ma C, Ueshiba K, Ideta H, Sobajima A, Uchiyama S, Takahashi J, Saito N. Current Methods in the Study of Nanomaterials for Bone Regeneration. NANOMATERIALS 2022; 12:nano12071195. [PMID: 35407313 PMCID: PMC9000656 DOI: 10.3390/nano12071195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
Abstract
Nanomaterials show great promise as bone regeneration materials. They can be used as fillers to strengthen bone regeneration scaffolds, or employed in their natural form as carriers for drug delivery systems. A variety of experiments have been conducted to evaluate the osteogenic potential of bone regeneration materials. In vivo, such materials are commonly tested in animal bone defect models to assess their bone regeneration potential. From an ethical standpoint, however, animal experiments should be minimized. A standardized in vitro strategy for this purpose is desirable, but at present, the results of studies conducted under a wide variety of conditions have all been evaluated equally. This review will first briefly introduce several bone regeneration reports on nanomaterials and the nanosize-derived caveats of evaluations in such studies. Then, experimental techniques (in vivo and in vitro), types of cells, culture media, fetal bovine serum, and additives will be described, with specific examples of the risks of various culture conditions leading to erroneous conclusions in biomaterial analysis. We hope that this review will create a better understanding of the evaluation of biomaterials, including nanomaterials for bone regeneration, and lead to the development of versatile assessment methods that can be widely used in biomaterial development.
Collapse
Affiliation(s)
- Manabu Tanaka
- Department of Orthopedic Surgery, Okaya City Hospital, 4-11-33 Honcho, Okaya, Nagano 394-8512, Japan;
- Correspondence: (M.T.); (H.H.); Tel.: +81-266-23-8000 (M.T.); +81-263-37-3555 (H.H.)
| | - Makoto Izumiya
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
- Correspondence: (M.T.); (H.H.); Tel.: +81-266-23-8000 (M.T.); +81-263-37-3555 (H.H.)
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Chuang Ma
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Koki Ueshiba
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hirokazu Ideta
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
| | - Atsushi Sobajima
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
- Department of Orthopedics (Lower Limbs), Social Medical Care Corporation Hosei-kai Marunouchi Hospital, 1-7-45 Nagisa, Matsumoto, Nagano 390-8601, Japan
| | - Shigeharu Uchiyama
- Department of Orthopedic Surgery, Okaya City Hospital, 4-11-33 Honcho, Okaya, Nagano 394-8512, Japan;
| | - Jun Takahashi
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
| |
Collapse
|
15
|
Optimization of a Tricalcium Phosphate-Based Bone Model Using Cell-Sheet Technology to Simulate Bone Disorders. Processes (Basel) 2022. [DOI: 10.3390/pr10030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone diseases such as osteoporosis, delayed or impaired bone healing, and osteoarthritis still represent a social, financial, and personal burden for affected patients and society. Fully humanized in vitro 3D models of cancellous bone tissue are needed to develop new treatment strategies and meet patient-specific needs. Here, we demonstrate a successful cell-sheet-based process for optimized mesenchymal stromal cell (MSC) seeding on a β-tricalcium phosphate (TCP) scaffold to generate 3D models of cancellous bone tissue. Therefore, we seeded MSCs onto the β-TCP scaffold, induced osteogenic differentiation, and wrapped a single osteogenically induced MSC sheet around the pre-seeded scaffold. Comparing the wrapped with an unwrapped scaffold, we did not detect any differences in cell viability and structural integrity but a higher cell seeding rate with osteoid-like granular structures, an indicator of enhanced calcification. Finally, gene expression analysis showed a reduction in chondrogenic and adipogenic markers, but an increase in osteogenic markers in MSCs seeded on wrapped scaffolds. We conclude from these data that additional wrapping of pre-seeded scaffolds will provide a local niche that enhances osteogenic differentiation while repressing chondrogenic and adipogenic differentiation. This approach will eventually lead to optimized preclinical in vitro 3D models of cancellous bone tissue to develop new treatment strategies.
Collapse
|
16
|
Jing X, Ding Q, Wu Q, Su W, Yu K, Su Y, Ye B, Gao Q, Sun T, Guo X. Magnesium-based materials in orthopaedics: material properties and animal models. BIOMATERIALS TRANSLATIONAL 2021; 2:197-213. [PMID: 35836647 PMCID: PMC9255805 DOI: 10.12336/biomatertransl.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
As a new generation of medical metal materials, degradable magnesium-based materials have excellent mechanical properties and osteogenic promoting ability, making them promising materials for the treatment of refractory bone diseases. Animal models can be used to understand and evaluate the performance of materials in complex physiological environments, providing relevant data for preclinical evaluation of implants and laying the foundation for subsequent clinical studies. To date, many researchers have studied the biocompatibility, degradability and osteogenesis of magnesium-based materials, but there is a lack of review regarding the effects of magnesium-based materials in vivo. In view of the growing interest in these materials, this review briefly describes the properties of magnesium-based materials and focuses on the safety and efficacy of magnesium-based materials in vivo. Various animal models including rats, rabbits, dogs and pigs are covered to better understand and evaluate the progress and future of magnesium-based materials. This literature analysis reveals that the magnesium-based materials have good biocompatibility and osteogenic activity, thus causing no adverse reaction around the implants in vivo, and that they exhibit a beneficial effect in the process of bone repair. In addition, the degradation rate in vivo can also be improved by means of alloying and coating. These encouraging results show a promising future for the use of magnesium-based materials in musculoskeletal disorders.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiuyue Ding
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qinxue Wu
- Department of Clinical Medicine, Hubei Enshi College, Enshi, Hubei Province, China
| | - Weijie Su
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Keda Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanlin Su
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Tingfang Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Xiaodong Guo,
| |
Collapse
|