1
|
Creighton CJ. Clinical proteomics towards multiomics in cancer. MASS SPECTROMETRY REVIEWS 2024; 43:1255-1269. [PMID: 36495097 DOI: 10.1002/mas.21827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent technological advancements in mass spectrometry (MS)-based proteomics technologies have accelerated its application to study greater and greater numbers of human tumor specimens. Over the last several years, the Clinical Proteomic Tumor Analysis Consortium, the International Cancer Proteogenome Consortium, and others have generated MS-based proteomic profiling data combined with corresponding multiomics data on thousands of human tumors to date. Proteomic data sets in the public domain can be re-examined by other researchers with different questions in mind from what the original studies explored. In this review, we examine the increasing role of proteomics in studying cancer, along with the potential for previous studies and their associated data sets to contribute to improving the diagnosis and treatment of cancer in the clinical setting. We also explore publicly available proteomics and multi-omics data from cancer cell line models to show how such data may aid in identifying therapeutic strategies for cancer subsets.
Collapse
Affiliation(s)
- Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Santos A, Cristóbal I, Rubio J, Caramés C, Luque M, Sanz-Álvarez M, Zazo S, Madoz-Gúrpide J, Rojo F, García-Foncillas J. MicroRNA-19b Plays a Key Role in 5-Fluorouracil Resistance and Predicts Tumor Progression in Locally Advanced Rectal Cancer Patients. Int J Mol Sci 2022; 23:ijms232012447. [PMID: 36293302 PMCID: PMC9604503 DOI: 10.3390/ijms232012447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
The standard clinical management of locally advanced rectal cancer (LARC) patients includes neoadjuvant 5-fluorouracil (5-FU)-based chemoradiotherapy (CRT) followed by mesorectal excision. MicroRNA (miR)-19b expression levels in LARC biopsies obtained from initial colonoscopy have recently been identified as independent predictors of both patient outcome and pathological response to preoperative CRT in this disease. Moreover, it has been discovered that this miR increases its expression in 5-FU resistant colon cancer cells after 5-FU exposure. Despite the fact that these observations suggest a functional role of miR-19b modulating 5-FU response of LARC cells, this issue still remains to be clarified. Here, we show that downregulation of miR-19b enhances the antitumor effects of 5-FU treatment. Moreover, ectopic miR-19b modulation was able to restore sensitivity to 5-FU treatment using an acquired resistant model to this compound. Notably, we also evaluated the potential clinical impact of miR-19b as a predictive marker of disease progression after tumor surgery resection in LARC patients, observing that miR-19b overexpression significantly anticipates patient recurrence in our cohort (p = 0.002). Altogether, our findings demonstrate the functional role of miR-19b in the progressively decreasing sensitivity to 5-FU treatment and its potential usefulness as a therapeutic target to overcome 5-FU resistance, as well as its clinical impact as predictor of tumor progression and relapse.
Collapse
Affiliation(s)
- Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, Health Research Institute (IIS)—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, Health Research Institute (IIS)—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Correspondence: (I.C.); (J.G.-F.); Tel.: +34-915-504-800 (I.C. & J.G.-F.)
| | - Jaime Rubio
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, Health Research Institute (IIS)—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| | - Cristina Caramés
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, Health Research Institute (IIS)—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| | - Melani Luque
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Marta Sanz-Álvarez
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Sandra Zazo
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Juan Madoz-Gúrpide
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Jesus García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
- Correspondence: (I.C.); (J.G.-F.); Tel.: +34-915-504-800 (I.C. & J.G.-F.)
| |
Collapse
|
3
|
Allison SJ. Novel Anti-Cancer Agents and Cellular Targets and Their Mechanism(s) of Action. Biomedicines 2022; 10:biomedicines10081767. [PMID: 35892667 PMCID: PMC9332372 DOI: 10.3390/biomedicines10081767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|