1
|
Li J, Wu K, Liu X, Yang D, Xie J, Wang Y, Liu K, Wang Z, Liu W, Jiang L. Anti-Toxoplasma gondii effects of XYP1-derived peptides and regulatory mechanisms of XYP1. Parasit Vectors 2024; 17:376. [PMID: 39232817 PMCID: PMC11373213 DOI: 10.1186/s13071-024-06455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Toxoplasmosis, caused by Toxoplasma gondii , poses serious health issues for humans and animals. Individuals with impaired immune systems are more susceptible to severe toxoplasmosis. Pregnant women infected by T. gondii can face the possibility of birth defects and miscarriages. While pyrimethamine and sulfadiazine are commonly used drugs in clinical practice, concerns over their side effects and resistance are on the rise. A spider peptide XYP1 isolated from Lycosa coelestis had potent anti-T. gondii effects, but it had a high synthesis cost and strong cytotoxicity. METHODS This study intended to modify XYP1 for producing derived peptides via amino acid truncation and substitution. The anti-T. gondii effect was evaluated by trypan blue staining assay and killing experiment of RH strain tachyzoites. The CCK8 and hemolysis assays were used to compare their safeties. The morphological changes of T. gondii were observed by scanning electron microscope and transmission electron microscope. In addition, the mechanism of XYP1 against T. gondii through RNA-sequencing was further explored. RESULTS In vivo and in vitro experiments revealed that XYP1-18 and XYP1-18-1 had excellent anti-T. gondii activity with lower cytotoxicity and hemolysis activity than XYP1. XYP1, XYP1-18, and XYP1-18-1 were able to disrupt the surface membrane integrity of T. gondii tachyzoites, forming pores and causing the disruption of organelles. Furthermore, RNA-sequencing analysis indicated that XYP1 could stimulate the host immune response to effectively eliminate T. gondii and lessen the host's inflammatory reaction. CONCLUSIONS XYP1-18 had lower cytotoxicity and hemolysis activity than XYP1, as well as significantly extending the survival time of the mice. XYP1 played a role in host inflammation and immune responses, revealing its potential mechanism. Our research provided valuable insights into the development and application of peptide-based drugs, offering novel strategies and directions for treating toxoplasmosis.
Collapse
Affiliation(s)
- Jing Li
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Xiaohua Liu
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Dongqian Yang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jing Xie
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yixiao Wang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Kang Liu
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zheng Wang
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Song Y, Wang J, Liu X, Yu S, Tang X, Tan H. LC-AMP-F1 Derived from the Venom of the Wolf Spider Lycosa coelestis, Exhibits Antimicrobial and Antibiofilm Activities. Pharmaceutics 2024; 16:129. [PMID: 38276499 PMCID: PMC10818355 DOI: 10.3390/pharmaceutics16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
In recent years, there has been a growing interest in antimicrobial peptides as innovative antimicrobial agents for combating drug-resistant bacterial infections, particularly in the fields of biofilm control and eradication. In the present study, a novel cationic antimicrobial peptide, named LC-AMP-F1, was derived from the cDNA library of the Lycosa coelestis venom gland. The sequence, physicochemical properties and secondary structure of LC-AMP-F1 were predicted and studied. LC-AMP-F1 was tested for stability, cytotoxicity, drug resistance, antibacterial activity, and antibiofilm activity in vitro compared with melittin, a well-studied antimicrobial peptide. The findings indicated that LC-AMP-F1 exhibited inhibitory effects on the growth of various bacteria, including five strains of multidrug-resistant bacteria commonly found in clinical settings. Additionally, LC-AMP-F1 demonstrated effective inhibition of biofilm formation and disruption of mature biofilms. Furthermore, LC-AMP-F1 exhibited favorable stability, minimal hemolytic activity, and low toxicity towards different types of eukaryotic cells. Also, it was found that the combination of LC-AMP-F1 with conventional antibiotics exhibited either synergistic or additive therapeutic benefits. Concerning the antibacterial mechanism, scanning electron microscopy and SYTOX Green staining results showed that LC-AMP-F1 increased cell membrane permeability and swiftly disrupted bacterial cell membranes to exert its antibacterial effects. In summary, the findings and studies facilitated the development and clinical application of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yuxin Song
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Junyao Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xi Liu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Shengwei Yu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xing Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421002, China
| | - Huaxin Tan
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Díaz-Gómez JL, Martín-Estal I, Rivera-Aboytes E, Gaxiola-Muñíz RA, Puente-Garza CA, García-Lara S, Castorena-Torres F. Biomedical applications of synthetic peptides derived from venom of animal origin: A systematic review. Biomed Pharmacother 2024; 170:116015. [PMID: 38113629 DOI: 10.1016/j.biopha.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Development of therapeutic agents that have fewer adverse effects and have higher efficacy for diseases, such as cancer, metabolic disorders, neurological diseases, infections, cardiovascular diseases, and respiratory diseases, are required. Recent studies have focused on identifying novel sources for pharmaceutical molecules to develop therapies against these diseases. Among the sources for potentially new therapies, animal venom-derived molecules have generated much interest. Various animal venom-derived proteins and peptides have been isolated, identified, synthesized, and tested to develop drugs. Venom-derived peptides have several biomedical properties, such as proapoptotic, cell migration, and autophagy regulation activities in cancer cell models; induction of vasodilation by nitric oxide and regulation of angiotensin II; modification of insulin response by controlling calcium and potassium channels; regulation of pain receptor activity; modulation of immune cell activity; alteration of motor neuron activity; degradation or inhibition of β-amyloid plaque formation; antibacterial, antifungal, antiviral, and antiprotozoal activities; increase in sperm motility and potentiation of erectile function; reduction of intraocular pressure; anticoagulation, fibrinolytic, and antithrombotic activities; etc. This systematic review compiles these biomedical properties and potential biomedical applications of synthesized animal venom-derived peptides reported in the latest research. In addition, the limitations and areas of opportunity in this research field are discussed so that new studies can be developed based on the data presented.
Collapse
Affiliation(s)
- Jorge L Díaz-Gómez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Elizabeth Rivera-Aboytes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Ramón Alonso Gaxiola-Muñíz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - César A Puente-Garza
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Silverio García-Lara
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Fabiola Castorena-Torres
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico.
| |
Collapse
|
4
|
Deng B, Vanagas L, Alonso AM, Angel SO. Proteomics Applications in Toxoplasma gondii: Unveiling the Host-Parasite Interactions and Therapeutic Target Discovery. Pathogens 2023; 13:33. [PMID: 38251340 PMCID: PMC10821451 DOI: 10.3390/pathogens13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Toxoplasma gondii, a protozoan parasite with the ability to infect various warm-blooded vertebrates, including humans, is the causative agent of toxoplasmosis. This infection poses significant risks, leading to severe complications in immunocompromised individuals and potentially affecting the fetus through congenital transmission. A comprehensive understanding of the intricate molecular interactions between T. gondii and its host is pivotal for the development of effective therapeutic strategies. This review emphasizes the crucial role of proteomics in T. gondii research, with a specific focus on host-parasite interactions, post-translational modifications (PTMs), PTM crosstalk, and ongoing efforts in drug discovery. Additionally, we provide an overview of recent advancements in proteomics techniques, encompassing interactome sample preparation methods such as BioID (BirA*-mediated proximity-dependent biotin identification), APEX (ascorbate peroxidase-mediated proximity labeling), and Y2H (yeast two hybrid), as well as various proteomics approaches, including single-cell analysis, DIA (data-independent acquisition), targeted, top-down, and plasma proteomics. Furthermore, we discuss bioinformatics and the integration of proteomics with other omics technologies, highlighting its potential in unraveling the intricate mechanisms of T. gondii pathogenesis and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Bin Deng
- Department of Biology and VBRN Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Andres M. Alonso
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| |
Collapse
|
5
|
Liu X, Zhang P, Liu Y, Li J, Yang D, Liu Z, Jiang L. Anti- Toxoplasma gondii Effects of Lipopeptide Derivatives of Lycosin-I. Toxins (Basel) 2023; 15:477. [PMID: 37624234 PMCID: PMC10467082 DOI: 10.3390/toxins15080477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Toxoplasmosis, caused by Toxoplasma gondii (T. gondii), is a serious zoonotic parasitic disease. We previously found that Lycosin-I exhibited anti-T. gondii activity, but its serum stability was not good enough. In this study, we aimed to improve the stability and activity of Lycosin-I through fatty acid chain modification, so as to find a better anti-T. gondii drug candidate. The α/ε-amino residues of different lysine residues of Lycosin-I were covalently coupled with lauric acid to obtain eight lipopeptides, namely L-C12, L-C12-1, L-C12-2, L-C12-3, L-C12-4, L-C12-5, L-C12-6, and L-C12-7. Among these eight lipopeptides, L-C12 showed the best activity against T. gondii in vitro in a trypan blue assay. We then conjugated a shorter length fatty chain, aminocaproic acid, at the same modification site of L-C12, namely L-an. The anti-T. gondii effects of Lycosin-I, L-C12 and L-an were evaluated via an invasion assay, proliferation assay and plaque assay in vitro. A mouse model acutely infected with T. gondii tachyzoites was established to evaluate their efficacy in vivo. The serum stability of L-C12 and L-an was improved, and they showed comparable or even better activity than Lycosin-I did in inhibiting the invasion and proliferation of tachyzoites. L-an effectively prolonged the survival time of mice acutely infected with T. gondii. These results suggest that appropriate fatty acid chain modification can improve serum stability and enhance anti-T. gondii effect of Lycosin-I. The lipopeptide derivatives of Lycosin-I have potential as a novel anti-T. gondii drug candidate.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (P.Z.); (Z.L.)
| | - Yuan Liu
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Jing Li
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Dongqian Yang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (P.Z.); (Z.L.)
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
- China-Africa Research Center of Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Sharma HN, Catrett J, Nwokeocha OD, Boersma M, Miller ME, Napier A, Robertson BK, Abugri DA. Anti-Toxoplasma gondii activity of Trametes versicolor (Turkey tail) mushroom extract. Sci Rep 2023; 13:8667. [PMID: 37248277 DOI: 10.1038/s41598-023-35676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023] Open
Abstract
Toxoplasma gondii (T. gondii) infection continues to rise globally in humans and animals with high socioeconomic and public health challenges. Current medications used against T. gondii infection are limited in efficacy, safety, and affordability. This research was conducted to assess the higher fungi extract effect on T. gondii tachyzoites growth in vitro and possibly decipher its mechanism of action. Furthermore, we evaluated the extract's effect on human foreskin fibroblast viability. The methanol extracts of Turkey tail (TT) mushroom was tested against T. gondii tachyzoites growth using an RH-RFP type I strain that expresses red fluorescent protein throughout culture in a dose-dependent manner using a fluorescent plate reader. Similarly, we tested the effect of the extract on host cell viability. We observed that TT extract inhibited tachyzoites growth with a 50% minimum inhibitory concentration (IC50s), IC50 = 5.98 ± 1.22 µg/mL, and 50% cytotoxic concentration (CC50s), CC50 ≥ 100 µg/mL. It was discovered that TT extract induced strong mitochondria superoxide and reactive oxygen species production and disrupted mitochondria membrane potential in T. gondii tachyzoites. Additionally, scanning electron microscopy depicted that TT extract and pyrimethamine (PY) caused a morphological deformation of tachyzoites in vitro. In conclusion, TT methanol extract made up of phytosterols, bioactive sphingolipids, peptides, phenolic acids, and lactones could be a promising source of new compounds for the future development of anti-Toxoplasma gondii drugs. Extracts were non-cytotoxic, even at higher concentrations.
Collapse
Affiliation(s)
- Homa Nath Sharma
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | | | - Ogechi Destiny Nwokeocha
- Department of Chemistry, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, 36088, USA
- The School of Dentistry (SOD) Doctorate of Dentistry Program, Meharry Medical College, Nashville, TN, USA
| | - Melissa Boersma
- Department of Chemistry and Biochemistry, College of Science and Mathematics (COSAM), Auburn University, Auburn, AL, 36849, USA
| | - Michael E Miller
- Auburn University Research Instrumentation Facility, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Audrey Napier
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Boakai K Robertson
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Daniel A Abugri
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
| |
Collapse
|
7
|
Parasitic Infection and Immunity-A Special Biomedicines Issue. Biomedicines 2022; 10:biomedicines10102547. [PMID: 36289809 PMCID: PMC9599367 DOI: 10.3390/biomedicines10102547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious parasitic diseases that affect humans and animals remain a central health concern worldwide [...].
Collapse
|
8
|
Cheng A, Zhang H, Chen B, Zheng S, Wang H, Shi Y, You S, Li M, Jiang L. Modulation of autophagy as a therapeutic strategy for Toxoplasma gondii infection. Front Cell Infect Microbiol 2022; 12:902428. [PMID: 36093185 PMCID: PMC9448867 DOI: 10.3389/fcimb.2022.902428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Toxoplasma gondii infection is a severe health threat that endangers billions of people worldwide. T. gondii utilizes the host cell membrane to form a parasitophorous vacuole (PV), thereby fully isolating itself from the host cell cytoplasm and making intracellular clearance difficult. PV can be targeted and destroyed by autophagy. Autophagic targeting results in T. gondii killing via the fusion of autophagosomes and lysosomes. However, T. gondii has developed many strategies to suppress autophagic targeting. Accordingly, the interplay between host cell autophagy and T. gondii is an emerging area with important practical implications. By promoting the canonical autophagy pathway or attenuating the suppression of autophagic targeting, autophagy can be effectively utilized in the development of novel therapeutic strategies against T gondii. Here, we have illustrated the complex interplay between host cell mediated autophagy and T. gondii. Different strategies to promote autophagy in order to target the parasite have been elucidated. Besides, we have analyzed some potential new drug molecules from the DrugBank database using bioinformatics tools, which can modulate autophagy. Various challenges and opportunities focusing autophagy mediated T. gondii clearance have been discussed, which will provide new insights for the development of novel drugs against the parasite.
Collapse
Affiliation(s)
- Ao Cheng
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Huanan Zhang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Baike Chen
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shengyao Zheng
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongyi Wang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yijia Shi
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Siyao You
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ming Li
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Liping Jiang, ; Ming Li,
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Liping Jiang, ; Ming Li,
| |
Collapse
|
9
|
Zupin L, dos Santos-Silva CA, Al Mughrbi ARH, Vilela LMB, Benko-Iseppon AM, Crovella S. Bioactive Antimicrobial Peptides: A New Weapon to Counteract Zoonosis. Microorganisms 2022; 10:1591. [PMID: 36014009 PMCID: PMC9414035 DOI: 10.3390/microorganisms10081591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Zoonoses have recently become the center of attention of the general population and scientific community. Notably, more than 30 new human pathogens have been identified in the last 30 years, 75% of which can be classified as zoonosis. The complete eradication of such types of infections is far out of reach, considering the limited understanding of animal determinants in zoonoses and their causes of emergence. Therefore, efforts must be doubled in examining the spread, persistence, and pathogenicity of zoonosis and studying possible clinical interventions and antimicrobial drug development. The search for antimicrobial bioactive compounds has assumed great emphasis, considering the emergence of multi-drug-resistant microorganisms. Among the biomolecules of emerging scientific interest are antimicrobial peptides (AMPs), potent biomolecules that can potentially act as important weapons against infectious diseases. Moreover, synthetic AMPs are easily tailored (bioinformatically) to target specific features of the pathogens to hijack, inducing no or very low resistance. Although very promising, previous studies on SAMPs' efficacy are still at their early stages. Indeed, further studies and better characterization on their mechanism of action with in vitro and in vivo assays are needed so as to proceed to their clinical application on human beings.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | | | | | - Livia Maria Batista Vilela
- Centro de Biociências, Departamento de Genética, Universidade Federal de Pernambuco, Recife 50670-420, Brazil
| | - Ana Maria Benko-Iseppon
- Centro de Biociências, Departamento de Genética, Universidade Federal de Pernambuco, Recife 50670-420, Brazil
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
10
|
Correction: Liu et al. Anti-Toxoplasma gondii Effects of a Novel Spider Peptide XYP1 In Vitro and In Vivo. Biomedicines 2021, 9, 934. Biomedicines 2022; 10:biomedicines10051176. [PMID: 35625951 PMCID: PMC9185831 DOI: 10.3390/biomedicines10051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
|
11
|
Jiang L, Liu B, Hou S, Su T, Fan Q, Alyafeai E, Tang Y, Wu M, Liu X, Li J, Hu Y, Li W, Zheng Z, Liu Y, Wu J. Discovery and evaluation of chalcone derivatives as novel potential anti-Toxoplasma gondii agents. Eur J Med Chem 2022; 234:114244. [DOI: 10.1016/j.ejmech.2022.114244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 01/08/2023]
|