1
|
Takemori S, Morisada T, Osaka M, Watanabe M, Tajima A, Tanigaki S, Kobayashi Y. Assessing the antitumor effects of metformin on ovarian clear cell carcinoma. Hum Cell 2024; 37:1462-1474. [PMID: 39115639 DOI: 10.1007/s13577-024-01116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Developing novel therapies that outperform the existing chemotherapeutic treatments is required for treatment-resistant ovarian clear cell carcinoma. We investigated the antitumor effect of metformin on ovarian clear cell carcinoma, enhancement of the antitumor effect by its combination with chemotherapy, and its molecular regulatory mechanism. First, we evaluated the viability of ovarian clear cell carcinoma lines using the water-soluble tetrazolium-1 assay and found that metformin suppressed cell viability. Cell viability was significantly suppressed by co-treatment with cisplatin and metformin. In contrast, co-treatment with paclitaxel and metformin showed no significant difference in viability compared with the group without metformin. Western blot analysis showed increased phosphorylation of AMP-activated protein kinase in some cell lines and suppressed phosphorylation of the mammalian target of rapamycin in a particular cell line. Flow cytometry analysis revealed a significant increase in the rate of apoptosis in the metformin-treated group and rate of cell cycle arrest at the G2/M phase in a particular cell line. These results indicated that metformin may be effective against cultured ovarian clear cell carcinoma cells, particularly in combination with cisplatin.
Collapse
Affiliation(s)
- Satoshi Takemori
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Tohru Morisada
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Makoto Osaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Momoe Watanabe
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Atsushi Tajima
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Shinji Tanigaki
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yoichi Kobayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
2
|
Stanciu SM, Jinga M, Miricescu D, Stefani C, Nica RI, Stanescu-Spinu II, Vacaroiu IA, Greabu M, Nica S. mTOR Dysregulation, Insulin Resistance, and Hypertension. Biomedicines 2024; 12:1802. [PMID: 39200267 PMCID: PMC11351979 DOI: 10.3390/biomedicines12081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Worldwide, diabetes mellitus (DM) and cardiovascular diseases (CVDs) represent serious health problems associated with unhealthy diet and sedentarism. Metabolic syndrome (MetS) is characterized by obesity, dyslipidemia, hyperglycemia, insulin resistance (IR) and hypertension. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase with key roles in glucose and lipid metabolism, cell growth, survival and proliferation. mTOR hyperactivation disturbs glucose metabolism, leading to hyperglycemia and further to IR, with a higher incidence in the Western population. Metformin is one of the most used hypoglycemic drugs, with anti-inflammatory, antioxidant and antitumoral properties, having also the capacity to inhibit mTOR. mTOR inhibitors such as rapamycin and its analogs everolimus and temsirolimus block mTOR activity, decrease the levels of glucose and triglycerides, and reduce body weight. The link between mTOR dysregulation, IR, hypertension and mTOR inhibitors has not been fully described. Therefore, the main aim of this narrative review is to present the mechanism by which nutrients, proinflammatory cytokines, increased salt intake and renin-angiotensin-aldosterone system (RAAS) dysregulation induce mTOR overactivation, associated further with IR and hypertension development, and also mTOR inhibitors with higher potential to block the activity of this protein kinase.
Collapse
Affiliation(s)
- Silviu Marcel Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Mariana Jinga
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
| | - Remus Iulian Nica
- Surgery Department, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanotari Blvd, 054474 Bucharest, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
- Department of Emergency and First Aid, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Guo D, Zhang S, Gao Y, Shi J, Wang X, Zhang Z, Zhang Y, Wang Y, Zhao K, Li M, Wang A, Wang P, Gou Y, Zhang M, Liu M, Zhang Y, Chen R, Sun J, Wang S, Wu X, Liang Z, Chen J, Lang J. Exploring the cellular and molecular differences between ovarian clear cell carcinoma and high-grade serous carcinoma using single-cell RNA sequencing and GEO gene expression signatures. Cell Biosci 2023; 13:139. [PMID: 37525249 PMCID: PMC10391916 DOI: 10.1186/s13578-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
The two most prevalent subtypes of epithelial ovarian carcinoma (EOC) are ovarian clear cell carcinoma (OCCC) and high-grade serous ovarian carcinoma (HGSC). Patients with OCCC have a poor prognosis than those with HGSC due to chemoresistance, implying the need for novel treatment target. In this study, we applied single-cell RNA sequencing (scRNA-seq) together with bulk RNA-seq data from the GEO (Gene Expression Omnibus) database (the GSE189553 dataset) to characterize and compare tumor heterogeneity and cell-level evolution between OCCC and HGSC samples. To begin, we found that the smaller proportion of an epithelial OCCC cell subset in the G2/M phase might explain OCCC chemoresistance. Second, we identified a possible pathogenic OCCC epithelial cell subcluster that overexpresses LEFTY1. Third, novel biomarkers separating OCCC from HGSC were discovered and subsequently validated on a wide scale using immunohistochemistry. Amine oxidase copper containing 1 (AOC1) was preferentially expressed in OCCC over HGSC, while S100 calcium-binding protein A2 (S100A2) was detected less frequently in OCCC than in HGSC. In addition, we discovered that metabolic pathways were enriched in the epithelial compartment of the OCCC samples. In vitro experiments verified that inhibition of oxidative phosphorylation or glycolysis pathways exerted direct antitumor effects on both OCCC and HGSC cells, while targeting glutamine metabolism or ferroptosis greatly attenuated chemosensitivity only in OCCC cells. Finally, to determine whether there were any variations in immune cell subsets between OCCC and HGSC, data from scRNA-seq and mass cytometry were pooled for analysis. In summary, our work provides the first holistic insights into the cellular and molecular distinctions between OCCC and HGSC and is a valuable source for discovering new targets to leverage in clinical treatments to improve the poor prognosis of patients with OCCC.
Collapse
Affiliation(s)
- Dan Guo
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sumei Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yike Gao
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaoxi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaran Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuming Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pan Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanqin Gou
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Miao Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meiyu Liu
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhan Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Rui Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Shu Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
| | - Xunyao Wu
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
5
|
Lu X, Tan Q, Ma J, Zhang J, Yu P. Emerging Role of LncRNA Regulation for NLRP3 Inflammasome in Diabetes Complications. Front Cell Dev Biol 2022; 9:792401. [PMID: 35087834 PMCID: PMC8789514 DOI: 10.3389/fcell.2021.792401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a widespread metabolic disease with various complications, including diabetic nephropathy, retinopathy, cardiomyopathy, and other cardiovascular or cerebrovascular diseases. As the prevalence of diabetes increases in all age groups worldwide, diabetes and its complications cause an emerging public health burden. NLRP3 inflammasome is a complex of several proteins that play a critical role in inflammatory response and various diseases, including diabetes and its complications. Accumulating evidences indicate that NLRP3 inflammasome contributes to the development of diabetes and diabetic complications and that NLRP3 inflammation inactivation is beneficial in treating these illnesses. Emerging evidences suggest the critical role of long non-coding RNAs (lncRNAs) in regulating NLRP3 inflammasome activity in various diseases. LncRNAs are non-coding RNAs exceeding 200 nucleotides in length. Its dysregulation has been linked to the development of diseases, including diabetes. Recently, growing evidences hint that regulating lncRNAs on NLRP3 inflammasome is critical in developing and progressing diabetes and diabetic complications. Here, we discuss the role of lncRNAs in regulating NLRP3 inflammasome as well as its participation in diabetes and diabetic complications, providing novel insights into developing future therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Xiaolin Lu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qihong Tan
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
McFadden M, Singh SK, Oprea-Ilies G, Singh R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13215480. [PMID: 34771642 PMCID: PMC8582784 DOI: 10.3390/cancers13215480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OvCa) is a destructive malignancy due to difficulties in early detection and late advanced-stage diagnoses, leading to high morbidity and mortality rates for women. Currently, the quality treatment for OvCa includes tumor debulking surgery and intravenous platinum-based chemotherapy. However, numerous patients either succumb to the disease or undergo relapse due to drug resistance, such as to platinum drugs. There are several mechanisms that cause cancer cells' resistance to chemotherapy, such as inactivation of the drug, alteration of the drug targets, enhancement of DNA repair of drug-induced damage, and multidrug resistance (MDR). Some targeted therapies, such as nanoparticles, and some non-targeted therapies, such as natural products, reverse MDR. Nanoparticle targeting can lead to the reversal of MDR by allowing direct access for agents to specific tumor sites. Natural products have many anti-cancer properties that adversely regulate the factors contributing to MDR. The present review displays the current problems in OvCa treatments that lead to resistance and proposes using nanotechnology and natural products to overcome drug resistance.
Collapse
Affiliation(s)
- Melayshia McFadden
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence:
| |
Collapse
|