1
|
Zhou W, Jiang X, Gao J. Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury. Asian J Pharm Sci 2024; 19:100965. [PMID: 39640057 PMCID: PMC11617990 DOI: 10.1016/j.ajps.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury is marked by the restriction and subsequent restoration of blood supply to an organ. This process can exacerbate the initial tissue damage, leading to further disorders, disability, and even death. Extracellular vesicles (EVs) are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells. The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy. The therapeutic potential of EVs derived from stem cells, endothelial cells, and plasma in I/R injury has been actively investigated. Therefore, this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs. We noted that EVs serve as nontoxic, flexible, and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression. The therapeutic efficacy of EVs can be enhanced through various engineering strategies. Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies. Finally, we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance. This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.
Collapse
Affiliation(s)
- Weihang Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Hu T, Duan R, Gao H, Bai X, Huang X, Yan X, An L, Ma Y, Chen R, Hong S, Gan M. Exosomes from myoblasts induced by hypoxic preconditioning improved ventricular conduction by increasing Cx43 expression in hypothermia ischemia reperfusion hearts. Cytotechnology 2024; 76:533-546. [PMID: 39188650 PMCID: PMC11344748 DOI: 10.1007/s10616-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/25/2024] [Indexed: 08/28/2024] Open
Abstract
Myocardial ischemia-reperfusion arrhythmia after cardiac surgery is common and seriously affects quality of life. Remote ischemic preconditioning can reduce the myocardial damage caused by severe ischemia. However, the underlying mechanism is not well understood. This study aimed to investigate the effects of exosomes derived from C2C12 mouse myoblasts after hypoxic preconditioning (HP) on ventricular conduction in hypothermic ischemia-reperfusion hearts. Myocardial ischemia-reperfusion model rats were established using the Langendorff cardiac perfusion system. Exosomes derived from normoxic (ExoA) and hypoxia-preconditioned (ExoB) C2C12 cells were injected into the jugular vein of the model rats. The time to heartbeat restoration, arrhythmia type and duration, and heart rate were recorded after myocardial ischemia-reperfusion. Conduction velocity on the surface of left ventricle was measured using a microelectrode array after 30 min of balanced perfusion, 15 min of reperfusion, and 30 min of reperfusion. Immunohistochemistry and western blotting were performed to determine the distribution and relative expression of connexin 43 (Cx43). ExoB contained more exosomes than ExoA, showing that HP stimulated the release of exosomes. The IR + ExoB group showed faster recovery of ventricular myocardial activity, a lower arrhythmia score, faster conduction velocity, and better electrical conductivity than the IR group. ExoB increased the expression of Cx43 and reduced its lateralization in the ventricular muscle. Our study showed that exosomes induced by hypoxic preconditioning can improve ventricular myocardial conduction and reperfusion arrhythmia in isolated hearts after hypothermic ischemia-reperfusion. Graphical abstract
Collapse
Affiliation(s)
- Tingju Hu
- Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550001 Guizhou China
| | - Rui Duan
- Department of Pain, The Second People’s Hospital of Guiyang, Guiyang, 550081 Guizhou China
| | - Hong Gao
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004 Guizhou China
| | - Xue Bai
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Xiang Huang
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Xu Yan
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Li An
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Yanyan Ma
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Rui Chen
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550001 Guizhou China
| | - Sen Hong
- Department of Pain, The Second People’s Hospital of Guiyang, Guiyang, 550081 Guizhou China
| | - Mi Gan
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| |
Collapse
|
3
|
Pham PNV, Yahsaly L, Ochsenfarth C, Giebel B, Schnitzler R, Zahn P, Frey UH. Influence of Anesthetic Regimes on Extracellular Vesicles following Remote Ischemic Preconditioning in Coronary Artery Disease. Int J Mol Sci 2024; 25:9304. [PMID: 39273253 PMCID: PMC11395148 DOI: 10.3390/ijms25179304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Remote ischemic preconditioning (RIPC) reduces ischemia-reperfusion injury in aortocoronary bypass surgery, potentially via extracellular vesicles (EVs) and their micro-RNA content. Clinical data implicate that propofol might inhibit the cardioprotective RIPC effect. This prospective, randomized study investigated the influence of different anesthetic regimes on RIPC efficacy and EV micro-RNA signatures. We also assessed the impact of propofol on cell protection after hypoxic conditioning and EV-mediated RIPC in vitro. H9c2 rat cardiomyoblasts were subjected to hypoxia, with or without propofol, and subsequent simulated ischemia-reperfusion injury. Apoptosis was measured by flow cytometry. Blood samples of 64 patients receiving anesthetic maintenance with propofol or isoflurane, along with RIPC or sham procedures, were analyzed, and EVs were enriched using a polymer-based method. Propofol administration corresponded with increased Troponin T levels (4669 ± 435.6 pg/mL), suggesting an inhibition of the cardioprotective RIPC effect. RIPC leads to a notable rise in miR-21 concentrations in the group receiving propofol anesthesia (fold change 7.22 ± 6.6). In vitro experiments showed that apoptosis reduction was compromised with propofol and only occurred in an EV-enriched preconditioning medium, not in an EV-depleted medium. Our study could clinically and experimentally confirm propofol inhibition of RIPC protection. Increased miR-21 expression could provide evidence for a possible inhibitory mechanism.
Collapse
Affiliation(s)
- Phuong N V Pham
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Loubna Yahsaly
- Department of Cardiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Crista Ochsenfarth
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Romina Schnitzler
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Peter Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ulrich H Frey
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
4
|
Wang M, Jia L, Song J, Ji X, Meng R, Zhou D. A systematic review of exosomes in remote ischemic conditioning. Biomed Pharmacother 2024; 177:117124. [PMID: 38991304 DOI: 10.1016/j.biopha.2024.117124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Remote ischemic conditioning (RIC) is considered a promising non-pharmacological therapeutic strategy to mitigate ischemic injury. Although the precise mechanisms of RIC's protective effects remain elusive, existing data suggest that exosomes contribute significantly to these processes through cell-to-cell communication OBJECTIVE: This review aims to elucidate the role of exosomes in RIC-mediated multi-organ protection. METHODS We systematically searched multiple databases through October 2023 for preclinical studies evaluating the effect of exosomes in ischemic models using RIC procedures. Key outcomes, such as improved organ function and reduced infarct size, were recorded. Articles were selected and data were extracted by independent pairs of reviewers. FINDINGS A total of 16 relevant studies were identified in this review, showing that circulating exosomes derived from the plasma of RIC-treated animals exhibited protective effects akin to those of the RIC procedure itself. Exosome concentrations were measured in eight studies, six of which reported significant increases in the RIC group. Additional findings indicated that RIC might primarily modulate the expression of miRNAs and bioactive molecules delivered by exosomes, rather than directly altering circulating exosome levels. Notably, the expression of 11 distinct exosomal miRNAs was altered after RIC intervention, potentially involving multiple pathways. CONCLUSION Exosomes appear to play a pivotal role in the protective effects induced by RIC. Clarifying their function in RIC under different pathological situations represents a grand challenge for future research.
Collapse
Affiliation(s)
- Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
5
|
Przewłócka K, Korewo-Labelle D, Berezka P, Karnia MJ, Kaczor JJ. Current Aspects of Selected Factors to Modulate Brain Health and Sports Performance in Athletes. Nutrients 2024; 16:1842. [PMID: 38931198 PMCID: PMC11206260 DOI: 10.3390/nu16121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This review offers a comprehensive evaluation of current aspects related to nutritional strategies, brain modulation, and muscle recovery, focusing on their applications and the underlying mechanisms of physiological adaptation for promoting a healthy brain, not only in athletes but also for recreationally active and inactive individuals. We propose that applying the rule, among others, of good sleep, regular exercise, and a properly balanced diet, defined as "SPARKS", will have a beneficial effect on the function and regeneration processes of the gut-brain-muscle axis. However, adopting the formula, among others, of poor sleep, stress, overtraining, and dysbiosis, defined as "SMOULDER", will have a detrimental impact on the function of this axis and consequently on human health as well as on athletes. Understanding these dynamics is crucial for optimizing brain health and cognitive function. This review highlights the significance of these factors for overall well-being, suggesting that adopting the "SPARKS" approach may benefit not only athletes but also older adults and individuals with health conditions.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Division of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Daria Korewo-Labelle
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Paweł Berezka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| |
Collapse
|
6
|
Malle M, Song P, Löffler PMG, Kalisi N, Yan Y, Valero J, Vogel S, Kjems J. Programmable RNA Loading of Extracellular Vesicles with Toehold-Release Purification. J Am Chem Soc 2024; 146:12410-12422. [PMID: 38669207 PMCID: PMC11082903 DOI: 10.1021/jacs.3c13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
Synthetic nanoparticles as lipid nanoparticles (LNPs) are widely used as drug delivery vesicles. However, they hold several drawbacks, including low biocompatibility and unfavorable immune responses. Naturally occurring extracellular vesicles (EVs) hold the potential as native, safe, and multifunctional nanovesicle carriers. However, loading of EVs with large biomolecules remains a challenge. Here, we present a controlled loading methodology using DNA-mediated and programmed fusion between EVs and messenger RNA (mRNA)-loaded liposomes. The fusion efficiency is characterized at the single-particle level by real-time microscopy through EV surface immobilization via lipidated biotin-DNA handles. Subsequently, fused EV-liposome particles (EVLs) can be collected by employing a DNA strand-replacement reaction. Transferring the fusion reaction to magnetic beads enables us to scale up the production of EVLs one million times. Finally, we demonstrated encapsulation of mCherry mRNA, transfection, and improved translation using the EVLs compared to liposomes or LNPs in HEK293-H cells. We envision this as an important tool for the EV-mediated delivery of RNA therapeutics.
Collapse
Affiliation(s)
| | - Ping Song
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Philipp M. G. Löffler
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Nazmie Kalisi
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Yan Yan
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Omiics
ApS, 8200 Aarhus N, Denmark
| | - Julián Valero
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus C, Denmark
| | - Stefan Vogel
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Jørgen Kjems
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Li F, Li L, Peng R, Liu C, Liu X, Liu Y, Wang C, Xu J, Zhang Q, Yang G, Li Y, Chen F, Li S, Cui W, Liu L, Xu X, Zhang S, Zhao Z, Zhang J. Brain-derived extracellular vesicles mediate systemic coagulopathy and inflammation after traumatic brain injury. Int Immunopharmacol 2024; 130:111674. [PMID: 38387190 DOI: 10.1016/j.intimp.2024.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Traumatic brain injury (TBI) can induce systemic coagulopathy and inflammation, thereby increasing the risk of mortality and disability. However, the mechanism causing systemic coagulopathy and inflammation following TBI remains unclear. In prior research, we discovered that brain-derived extracellular vesicles (BDEVs), originating from the injured brain, can activate the coagulation cascade and inflammatory cells. In this study, we primarily investigated how BDEVs affect systemic coagulopathy and inflammation in peripheral circulation. The results of cytokines and coagulation function indicated that BDEVs can lead to systemic coagulopathy and inflammation by influencing inflammatory factors and chemokines within 24 h. Furthermore, according to flow cytometry and blood cell counter results, we found that BDEVs induced changes in the blood count such as a reduced number of platelets and leukocytes and an increased percentage of neutrophils, macrophages, activated platelets, circulating platelet-EVs, and leukocyte-derived EVs. We also discovered that eliminating circulating BDEVs with lactadherin helped improve coagulopathy and inflammation, relieved blood cell dysfunction, and decreased the circulating platelet-EVs and leukocyte-derived EVs. Our research provides a novel viewpoint and potential mechanism of TBI-associated secondary damage.
Collapse
Affiliation(s)
- Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Chuan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yafan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianye Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Qiaoling Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Guili Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ying Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - FangLian Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Weiyun Cui
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
8
|
Xu Y, Wang Y, Ji X. Immune and inflammatory mechanism of remote ischemic conditioning: A narrative review. Brain Circ 2023; 9:77-87. [PMID: 37576576 PMCID: PMC10419737 DOI: 10.4103/bc.bc_57_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 08/15/2023] Open
Abstract
The benefits of remote ischemic conditioning (RIC) on multiple organs have been extensively investigated. According to existing research, suppressing the immune inflammatory response is an essential mechanism of RIC. Based on the extensive effects of RIC on cardiovascular and cerebrovascular diseases, this article reviews the immune and inflammatory mechanisms of RIC and summarizes the effects of RIC on immunity and inflammation from three perspectives: (1) the mechanisms of the impact of RIC on inflammation and immunity; (2) evidence of the effects of RIC on immune and inflammatory processes in ischaemic stroke; and (3) possible future applications of this effect, especially in systemic infectious diseases such as sepsis and sepsis-associated encephalopathy. This review explores the possibility of using RIC as a treatment in more inflammation-related diseases, which will provide new ideas for the treatment of this kind of disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Liu X, Zhang L, Cao Y, Jia H, Li X, Li F, Zhang S, Zhang J. Neuroinflammation of traumatic brain injury: Roles of extracellular vesicles. Front Immunol 2023; 13:1088827. [PMID: 36741357 PMCID: PMC9889855 DOI: 10.3389/fimmu.2022.1088827] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of neurological disorder or death, with a heavy burden on individuals and families. While sustained primary insult leads to damage, subsequent secondary events are considered key pathophysiological characteristics post-TBI, and the inflammatory response is a prominent contributor to the secondary cascade. Neuroinflammation is a multifaceted physiological response and exerts both positive and negative effects on TBI. Extracellular vesicles (EVs), as messengers for intercellular communication, are involved in biological and pathological processes in central nervous system (CNS) diseases and injuries. The number and characteristics of EVs and their cargo in the CNS and peripheral circulation undergo tremendous changes in response to TBI, and these EVs regulate neuroinflammatory reactions by activating prominent receptors on receptor cells or delivering pro- or anti-inflammatory cargo to receptor cells. The purpose of this review is to discuss the possible neuroinflammatory mechanisms of EVs and loading in the context of TBI. Furthermore, we summarize the potential role of diverse types of cell-derived EVs in inflammation following TBI.
Collapse
Affiliation(s)
- Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lan Zhang
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiyao Cao
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Haoran Jia
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Xiaotian Li
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Fanjian Li
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| |
Collapse
|
10
|
Dang Y, Hua W, Zhang X, Sun H, Zhang Y, Yu B, Wang S, Zhang M, Kong Z, Pan D, Chen Y, Li S, Yuan L, Reinhardt JD, Lu X, Zheng Y. Anti-angiogenic effect of exo-LncRNA TUG1 in myocardial infarction and modulation by remote ischemic conditioning. Basic Res Cardiol 2023; 118:1. [PMID: 36635484 DOI: 10.1007/s00395-022-00975-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
The successful use of exosomes in therapy after myocardial infarction depends on an improved understanding of their role in cardiac signaling and regulation. Here, we report that exosomes circulating after myocardial infarction (MI) carry LncRNA TUG1 which downregulates angiogenesis by disablement of the HIF-1α/VEGF-α axis and that this effect can be counterbalanced by remote ischemic conditioning (RIC). Rats with MI induced through left coronary artery ligation without (MI model) and with reperfusion (ischemia/reperfusion I/R model) were randomized to RIC, or MI (I/R) or sham-operated (SO) control. Data from one cohort study and one randomized-controlled trial of humans with MI were also utilized, the former involving patients who had not received percutaneous coronary intervention (PCI) and the latter patients with PCI. Exosome concentrations did not differ between intervention groups (RIC vs. control) in rats (MI and I/R model) as well as humans (with and without PCI). However, MI and I/R exosomes attenuated HIF-1α, VEGF-α, and endothelial function. LncRNA TUG1 was increased in MI and I/R exosomes, but decreased in SO and RIC exosomes. HIF-1α expression was downregulated with MI and I/R exosomes but increased with RIC exosomes. Exosome inhibition suppressed HIF-1α upregulation through RIC exosomes. VEGF-α was identified as HIF-1α-regulated target gene. Knockdown of HIF-1α decreased VEGF-α, endothelial cell capability, and tube formation. Overexpression of HIF-1α exerted opposite effects. Transfection and co-transfection of 293 T cells with exosome-inhibitor GW4869 and HIF-1α inhibitor si-HIF-1α confirmed the exosomal-LncRNA TUG1/HIF-1α/VEGF-α pathway. LncRNA TUG1 is a potential therapeutic target after MI with or without reperfusion through PCI.
Collapse
Affiliation(s)
- Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Division of Gastroenterological Rehabilitation, Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Hua
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Xintong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Hao Sun
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingjie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Binbin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Shengrui Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Division of Gastroenterological Rehabilitation, Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Kong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Division of Gastroenterological Rehabilitation, Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dijia Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Ying Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Shurui Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Liang Yuan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University, No. 122 Huanghezhong Road First Section, Chengdu, 610207, China. .,Swiss Paraplegic Research, Nottwil, Switzerland. .,Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland.
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|