1
|
Wang ZZ, Yao GT, Wang LZ, Zhu YJ, Chen JH. Increased Expression and Prognostic Significance of BYSL in Melanoma. J Immunother 2024; 47:279-302. [PMID: 38980088 DOI: 10.1097/cji.0000000000000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/19/2024] [Indexed: 07/10/2024]
Abstract
We evaluated the BYSL content and underlying mechanism in melanoma (SKCM) overall survival (OS). In this study, we used a comprehensive approach combining bioinformatics tools, including miRNA estimation, quantitative real-time polymerase chain reaction (qRT-PCR) of miRNAs, E3 ligase estimation, STRING analysis, TIMER analysis, examination of associated upstream modulators, protein-protein interaction (PPI) analysis, as well as retrospective and survival analyses, alongside clinical sample validation. These methods were used to investigate the content of BYSL, its methylation status, its relation to patient outcome, and its immunologic significance in tumors. Our findings revealed that BYSL expression is negatively regulated by BYSL methylation. Analysis of 468 cases of SKCM RNA sequencing samples demonstrated that enhanced BYSL expression was associated with higher tumor grade. We identified several miRNAs, namely hsa-miR-146b-3p, hsa-miR-342-3p, hsa-miR-511-5p, hsa-miR-3690, and hsa-miR-193a-5p, which showed a strong association with BYSL levels. Furthermore, we predicted the E3 ubiquitin ligase of BYSL and identified CBL, FBXW7, FZR1, KLHL3, and MARCH1 as potential modulators of BYSL. Through our investigation, we discovered that PNO1, RIOK2, TSR1, WDR3, and NOB1 proteins were strongly associated with BYSL expression. In addition, we found a close association between BYSL levels and certain immune cells, particularly dendritic cells (DCs). Notably, we observed a significant negative correlation between miR-146b-3p and BYSL mRNA expression in SKCM sera samples. Collectively, based on the previously shown evidences, BYSL can serve as a robust bioindicator of SKCM patient prognosis, and it potentially contributes to immune cell invasion in SKCM.
Collapse
Affiliation(s)
- Zhong-Zhi Wang
- Department of Dermatology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Guo-Tai Yao
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang-Zhe Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yuan-Jie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Jiang-Han Chen
- Department of Dermatology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Ghandadi M, Dobi A, Malhotra SV. A role for RIO kinases in the crosshair of cancer research and therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189100. [PMID: 38604268 DOI: 10.1016/j.bbcan.2024.189100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
RIO (right open reading frame) family of kinases including RIOK1, RIOK2 and RIOK3 are known for their role in the ribosomal biogenesis. Dysfunction of RIO kinases have been implicated in malignancies, including acute myeloid leukemia, glioma, breast, colorectal, lung and prostatic adenocarcinoma suggesting RIO kinases as potential targets in cancer. In vitro, in vivo and clinical studies have demonstrated that RIO kinases are overexpressed in various types of cancers suggesting important roles in tumorigenesis, especially in metastasis. In the context of malignancies, RIO kinases are involved in cancer-promoting pathways including AKT/mTOR, RAS, p53 and NF-κB and cell cycle regulation. Here we review the role of RIO kinases in cancer development emphasizing their potential as therapeutic target and encouraging further development and investigation of inhibitors in the context of cancer.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Medicinal Plants Research Center, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services, University of the Health Sciences, Bethesda, MD 20817, USA; Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
3
|
Della Monica R, Buonaiuto M, Cuomo M, Pagano C, Trio F, Costabile D, de Riso G, Cicala FS, Raia M, Franca RA, Del Basso De Caro M, Sorrentino D, Navarra G, Coppola L, Tripodi L, Pastore L, Hench J, Frank S, Schonauer C, Catapano G, Bifulco M, Chiariotti L, Visconti R. Targeted inhibition of the methyltransferase SETD8 synergizes with the Wee1 inhibitor adavosertib in restraining glioblastoma growth. Cell Death Dis 2023; 14:638. [PMID: 37758718 PMCID: PMC10533811 DOI: 10.1038/s41419-023-06167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.
Collapse
Affiliation(s)
- Rosa Della Monica
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy.
| | - Michela Buonaiuto
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Mariella Cuomo
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Federica Trio
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
| | - Davide Costabile
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- SEMM-European School of Molecular Medicine, University of Napoli "Federico II", Napoli, Italy
| | - Giulia de Riso
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Francesca Sveva Cicala
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Maddalena Raia
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
| | | | | | | | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lorella Tripodi
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lucio Pastore
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Juergen Hench
- Institute for Medical Genetics and Pathology, Basel University Hospitals, Basel, Switzerland
| | - Stephan Frank
- Institute for Medical Genetics and Pathology, Basel University Hospitals, Basel, Switzerland
| | | | | | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lorenzo Chiariotti
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy.
| | - Roberta Visconti
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Institute for the Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research of Italy, Napoli, Italy.
| |
Collapse
|
4
|
Docking-based virtual screening and molecular dynamic studies to identify new RIOK2 inhibitors. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Matsuzaki Y, Naito Y, Miura N, Mori T, Watabe Y, Yoshimoto S, Shibahara T, Takano M, Honda K. RIOK2 Contributes to Cell Growth and Protein Synthesis in Human Oral Squamous Cell Carcinoma. Curr Oncol 2022; 30:381-391. [PMID: 36661680 PMCID: PMC9857684 DOI: 10.3390/curroncol30010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Ribosomes are responsible for the protein synthesis that maintains cellular homeostasis and is required for the rapid cellular division of cancer cells. However, the role of ribosome biogenesis mediators in the malignant behavior of tongue squamous cell carcinoma (TSCC) is unknown. In this study, we found that the expression of RIOK2, a key enzyme involved in the maturation steps of the pre-40S ribosomal complex, was significantly associated with poorer overall survival in patients with TSCC. Further, multivariate analysis revealed that RIOK2 is an independent prognostic factor (hazard ratio, 3.53; 95% confidence interval, 1.19-10.91). Inhibition of RIOK2 expression by siRNA decreased cell growth and S6 ribosomal protein expression in oral squamous cell carcinoma cell lines. RIOK2 knockdown also led to a significant decrease in the protein synthesis in cancer cells. RIOK2 has potential application as a novel therapeutic target for TSCC treatment.
Collapse
Affiliation(s)
- Yusuke Matsuzaki
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yutaka Naito
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Nami Miura
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yukio Watabe
- Department of Dentistry and Oral Surgery, Tokyo Metropolitan Tama Medical Center, Tokyo 183-8524, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masayuki Takano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
6
|
APY0201 Represses Tumor Growth through Inhibiting Autophagy in Gastric Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:7104592. [PMID: 36245991 PMCID: PMC9568353 DOI: 10.1155/2022/7104592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022]
Abstract
Gastric cancer (GC) is one of the most common cancers globally. There are currently few effective chemotherapeutic drugs available for GC patients. The inhibitors of phosphatidylinositol kinase containing an FYVE finger structure (PIKfyve) have shown significant anticancer effects in several types of cancers, but their effectiveness in GC remains unknown. In this study, we investigate the effect of APY0201, an inhibitor of PIKfyve, on GC tumor growth and its mechanism of action. It was found that APY0201 inhibited GC cell proliferation in in vitro GC cell model, organoid model, and in vivo xenograft tumor model. Through analyzing cell autophagy, we found that APY0201 might block autophagic flux by impairing lysosome degradation function of GC cells, inducing the accumulation of autophagosomes, thus causing the inhibition of GC cell proliferation. We also found that APY0201 induced G1/S phase arrest in GC cells. Importantly, APY0201 was also effective in inducing repression of autophagy and cell cycle arrest in the mouse tumor xenograft. Our results suggest that APY0201 could be a new promising therapeutic option for GC.
Collapse
|
7
|
Pastorino F, Brignole C. Editorial of the Special Issue “Targeted Therapies for Cancer”. Biomedicines 2022; 10:biomedicines10051114. [PMID: 35625850 PMCID: PMC9138888 DOI: 10.3390/biomedicines10051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer, the second leading cause of death worldwide, continues to represent an impressive challenge for researchers and clinicians [...]
Collapse
Affiliation(s)
- Fabio Pastorino
- Correspondence: (F.P.); (C.B.); Tel.: +39-010-5636-3541 (F.P.); +39-010-5636-3533 (C.B.)
| | - Chiara Brignole
- Correspondence: (F.P.); (C.B.); Tel.: +39-010-5636-3541 (F.P.); +39-010-5636-3533 (C.B.)
| |
Collapse
|