1
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
2
|
Hong SM, Lee A, Kim B, Lee J, Seon S, Ha Y, Ng JT, Yoon G, Lim SB, Morgan MJ, Cha J, Lee D, Kim Y. NAMPT-Driven M2 Polarization of Tumor-Associated Macrophages Leads to an Immunosuppressive Microenvironment in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303177. [PMID: 38308188 PMCID: PMC11005718 DOI: 10.1002/advs.202303177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/16/2023] [Indexed: 02/04/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a metabolic enzyme with key roles in inflammation. Previous studies have examined the consequences of its upregulated expression in cancer cells themselves, but studies are limited with respect to its role in the other cells within the tumor microenvironment (TME) during colorectal cancer (CRC) progression. Using single-cell RNA sequencing (scRNA-seq) data, it is founded that NAMPT is highly expressed in SPP1+ tumor-associated macrophages (TAMs), a unique subset of TAMs associated with immunosuppressive activity. A NAMPThigh gene signature in SPP1+ TAMs correlated with worse prognostic outcomes in CRC patients. The effect of Nampt deletion in the myeloid compartment of mice during CRC development is explored. NAMPT deficiency in macrophages resulted in HIF-1α destabilization, leading to reduction in M2-like TAM polarization. NAMPT deficiency caused significant decreases in the efferocytosis activity of macrophages, which enhanced STING signaling and the induction of type I IFN-response genes. Expression of these genes contributed to anti-tumoral immunity via potentiation of cytotoxic T cell activity in the TME. Overall, these findings suggest that NAMPT-initiated TAM-specific genes can be useful in predicting poor CRC patient outcomes; strategies aimed at targeting NAMPT may provide a promising therapeutic approach for building an immunostimulatory TME in CRC progression.
Collapse
Affiliation(s)
- Sun Mi Hong
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - A‐Yeon Lee
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Byeong‐Ju Kim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Jeong‐Eun Lee
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Su‐Yeon Seon
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Yu‐Jin Ha
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Jestlin Tianthing Ng
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Gyesoon Yoon
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Su Bin Lim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Michael J. Morgan
- Department of Natural SciencesNortheastern State UniversityTahlequahOK74464USA
| | - Jong‐Ho Cha
- Department of Biomedical SciencesCollege of MedicineInha UniversityIncheon22212South Korea
- Department of Biomedical Science and EngineeringGraduate SchoolInha UniversityIncheon22212South Korea
| | - Dakeun Lee
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of PathologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - You‐Sun Kim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| |
Collapse
|
3
|
Aizaz M, Khan A, Khan F, Khan M, Musad Saleh EA, Nisar M, Baran N. The cross-talk between macrophages and tumor cells as a target for cancer treatment. Front Oncol 2023; 13:1259034. [PMID: 38033495 PMCID: PMC10682792 DOI: 10.3389/fonc.2023.1259034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Macrophages represent an important component of the innate immune system. Under physiological conditions, macrophages, which are essential phagocytes, maintain a proinflammatory response and repair damaged tissue. However, these processes are often impaired upon tumorigenesis, in which tumor-associated macrophages (TAMs) protect and support the growth, proliferation, and invasion of tumor cells and promote suppression of antitumor immunity. TAM abundance is closely associated with poor outcome of cancer, with impediment of chemotherapy effectiveness and ultimately a dismal therapy response and inferior overall survival. Thus, cross-talk between cancer cells and TAMs is an important target for immune checkpoint therapies and metabolic interventions, spurring interest in it as a therapeutic vulnerability for both hematological cancers and solid tumors. Furthermore, targeting of this cross-talk has emerged as a promising strategy for cancer treatment with the antibody against CD47 protein, a critical macrophage checkpoint recognized as the "don't eat me" signal, as well as other metabolism-focused strategies. Therapies targeting CD47 constitute an important milestone in the advancement of anticancer research and have had promising effects on not only phagocytosis activation but also innate and adaptive immune system activation, effectively counteracting tumor cells' evasion of therapy as shown in the context of myeloid cancers. Targeting of CD47 signaling is only one of several possibilities to reverse the immunosuppressive and tumor-protective tumor environment with the aim of enhancing the antitumor response. Several preclinical studies identified signaling pathways that regulate the recruitment, polarization, or metabolism of TAMs. In this review, we summarize the current understanding of the role of macrophages in cancer progression and the mechanisms by which they communicate with tumor cells. Additionally, we dissect various therapeutic strategies developed to target macrophage-tumor cell cross-talk, including modulation of macrophage polarization, blockade of signaling pathways, and disruption of physical interactions between leukemia cells and macrophages. Finally, we highlight the challenges associated with tumor hypoxia and acidosis as barriers to effective cancer therapy and discuss opportunities for future research in this field.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Aakif Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faisal Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Maryum Nisar
- School of Interdisciplinary Engineering & Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Yadav D, Puranik N, Meshram A, Chavda V, Lee PCW, Jin JO. How Advanced are Cancer Immuno-Nanotherapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:35-48. [PMID: 36636642 PMCID: PMC9830082 DOI: 10.2147/ijn.s388349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer is a broad term for a group of diseases involving uncontrolled cell growth and proliferation. There is no cure for cancer despite recent significant improvements in screening, treatment, and prevention approaches. Among the available treatments, immunotherapy has been successful in targeting and killing cancer cells by stimulating or enhancing the body's immune system. Antibody-based immunotherapeutic agents that block immune checkpoint proteins expressed by cancer cells have shown promising results. The rapid development of nanotechnology has contributed to improving the effectiveness and reducing the adverse effects of these anti-cancer immunotherapeutic agents. Recently, engineered nanomaterials have been the focus of many state-of-The-art approaches toward effective cancer treatment. In this review, the contribution of various nanomaterials such as polymeric nanoparticles, dendrimers, microspheres, and carbon nanomaterials in improving the efficiency of anti-cancer immunotherapy is discussed as well as nanostructures applied to combination cancer immunotherapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Anju Meshram
- Department of Biotechnology, Kalinga University, Naya Raipur, Chhattisgarh, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea,Correspondence: Peter Chang-Whan Lee, Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea, Email
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea,Jun-O Jin, Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea, Email
| |
Collapse
|
5
|
Combination of dl922-947 Oncolytic Adenovirus and G-Quadruplex Binders Uncovers Improved Antitumor Activity in Breast Cancer. Cells 2022; 11:cells11162482. [PMID: 36010559 PMCID: PMC9406944 DOI: 10.3390/cells11162482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
G-quadruplexes (G4s) are nucleic secondary structures characterized by G-tetrads. G4 motif stabilization induces DNA damage and cancer cell death; therefore, G4-targeting small molecules are the focus of clinical investigation. DNA destabilization induced by G4 ligands might potentiate the anticancer activity of agents targeting DNA or inhibiting its repair such as oncolytic viruses. This study represents the first approach combining G4 ligands, BRACO-19 (B19), pyridostatin (PDS), and the adenovirus dl922-947 in breast cancer cells. We demonstrated that G4 binders and dl922-947 induce cytotoxicity in breast cancer cells (MDA-MB-231 and MCF-7) and at higher doses in other neoplastic cell lines of thyroid (BHT-101 cells) and prostate (PC3 cells). G4 binders induce G4 motifs distributed in the S and G2/M phases in MCF-7 cells. G4 binder/dl922-947 combination increases cell cytotoxicity and the accumulation in subG0/G1. Indeed, G4 binders favor viral entry and replication with no effect on coxsackie and adenovirus receptor. Notably, dl922-947 induces G4 motifs and its combination with PDS potentiates this effect in MCF-7 cells. The agents alone or in combination similarly enhanced cell senescence. Additionally, PDS/dl922-947 combination inactivates STING signaling in MDA-MB-231 cells. Our results suggest that G4 binder/virotherapy combination may represent a novel therapeutic anticancer approach.
Collapse
|
6
|
Bezsonov EE, Gratchev A, Orekhov AN. Macrophages in Health and Non-Infectious Disease 2.0. Biomedicines 2022; 10:biomedicines10061215. [PMID: 35740237 PMCID: PMC9219829 DOI: 10.3390/biomedicines10061215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8 Izmailovsky Boulevard, 105043 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| | - Alexei Gratchev
- N.N. Blokhin Cancer Research Center, Institute of Carcinogenesis, 115478 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| |
Collapse
|