1
|
Cillo U, Lonati C, Bertacco A, Magnini L, Battistin M, Borsetto L, Dazzi F, Al-Adra D, Gringeri E, Bacci ML, Schlegel A, Dondossola D. A proof-of-concept study in small and large animal models for coupling liver normothermic machine perfusion with mesenchymal stromal cell bioreactors. Nat Commun 2025; 16:283. [PMID: 39746966 PMCID: PMC11697227 DOI: 10.1038/s41467-024-55217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
To fully harness mesenchymal-stromal-cells (MSCs)' benefits during Normothermic Machine Perfusion (NMP), we developed an advanced NMP platform coupled with a MSC-bioreactor and investigated its bio-molecular effects and clinical feasibility using rat and porcine models. The study involved three work packages: 1) Development (n = 5): MSC-bioreactors were subjected to 4 h-liverless perfusion; 2) Rat model (n = 10): livers were perfused for 4 h on the MSC-bioreactor-circuit or with the standard platform; 3) Porcine model (n = 6): livers were perfused using a clinical device integrated with a MSC-bioreactor or in its standard setup. MSCs showed intact stem-core properties after liverless-NMP. Liver NMP induced specific, liver-tailored, changes in MSCs' secretome. Rat livers exposed to bioreactor-based perfusion produced more bile, released less damage and pro-inflammatory biomarkers, and showed improved mithocondrial function than those subjected to standard NMP. MSC-bioreactor integration into a clinical device resulted in no machine failure and perfusion-related injury. This proof-of-concept study presents a novel MSC-based liver NMP platform that could reduce the deleterious effects of ischemia/reperfusion before transplantation.
Collapse
Affiliation(s)
- Umberto Cillo
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy.
| | - Alessandra Bertacco
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Lucrezia Magnini
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Lara Borsetto
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - David Al-Adra
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Enrico Gringeri
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Schlegel
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
| |
Collapse
|
2
|
De Carlis R, Lauterio A, Schlegel A, Gringeri E, Patrono D, Camagni S, Dondossola D, Pezzati D, Olivieri T, Pagano D, Bongini M, Montanelli P, Ravaioli M, Bernasconi D, Valsecchi MG, Baccarani U, Cescon M, Andorno E, Mazzaferro V, Gruttadauria S, Di Benedetto F, Ghinolfi D, Caccamo L, Pinelli D, Romagnoli R, Cillo U, De Carlis L. Are there any benefits of prolonged hypothermic oxygenated perfusion?: Results from a national retrospective study. Liver Transpl 2025; 31:70-84. [PMID: 39287560 DOI: 10.1097/lvt.0000000000000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024]
Abstract
Dual hypothermic oxygenated perfusion (DHOPE) is increasingly being used to extend liver preservation to improve transplant logistics. However, little is known about its benefits in high-risk liver grafts. This study aimed to investigate whether prolonged DHOPE provides benefits other than improved logistics in all liver types. We performed a national retrospective cohort study of 177 liver transplants from 12 Italian centers preserved with DHOPE for ≥4 hours between 2015 and 2022. A control group of 177 DHOPEs of <4 hours during the same period was created using 1:1 propensity score matching. The impact of risk profiles and preservation times on the outcomes was assessed using univariable and multivariable regression models. No significant differences in posttransplant outcomes were found between prolonged and short DHOPEs. However, the prolonged group had a significantly lower incidence of posttransplant acute kidney injury (AKI) compared to the short group (30.5% vs. 44.6%, p = 0.008). Among prolonged DHOPEs, no differences in transplant outcomes were observed according to donor risk index, Eurotransplant definition for marginal grafts, and balance of risk score. DHOPE duration was associated with a lower risk of AKI in multivariable models adjusted for donor risk index, Eutrotransplant marginal grafts, and balance of risk score. Prolonged hypothermic oxygenated perfusion confirmed its protective effect against AKI in a multivariable model adjusted for donor and recipient risk factors [OR: 0.412, 95% CI: 0.200-0.850, p = 0.016]. Prolonged DHOPE is widely used to improve transplant logistics, provides good results with high-risk grafts, and appears to be associated with a lower risk of posttransplant AKI. These results provide further insight into the important role of DHOPE in preventing posttransplant complications.
Collapse
Affiliation(s)
- Riccardo De Carlis
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Ph.D. Course in Clinical and Experimental Sciences, University of Padua, Padua, Italy
| | - Andrea Lauterio
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrea Schlegel
- Transplantation Center at Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Enrico Gringeri
- General Surgery 2-Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padua University Hospital, Padua, Italy
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino University of Turin, Turin, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daniele Pezzati
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Tiziana Olivieri
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Duilio Pagano
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione, University of Pittsburgh Medical Center, Palermo, Italy
| | - Marco Bongini
- Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Paolo Montanelli
- Liver Transplantation Unit, San Martino Polyclinic Hospital, Genoa, Italy
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Davide Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre, School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
- Department of Clinical Research and Innovation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre, School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Umberto Baccarani
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Enzo Andorno
- Liver Transplantation Unit, San Martino Polyclinic Hospital, Genoa, Italy
| | - Vincenzo Mazzaferro
- Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
- Department of Oncology, University of Milan, Milan, Italy
| | - Salvatore Gruttadauria
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione, University of Pittsburgh Medical Center, Palermo, Italy
- Department of Surgery and Medical and Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Di Benedetto
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Lucio Caccamo
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Domenico Pinelli
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino University of Turin, Turin, Italy
| | - Umberto Cillo
- General Surgery 2-Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padua University Hospital, Padua, Italy
| | - Luciano De Carlis
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Dondossola D, Lonati C, Battistin M, Vivona L, Zanella A, Maggioni M, Valentina V, Zizmare L, Trautwein C, Schlegel A, Gatti S. Twelve-hour normothermic liver perfusion in a rat model: characterization of the changes in the ex-situ bio-molecular phenotype and metabolism. Sci Rep 2024; 14:6040. [PMID: 38472309 DOI: 10.1038/s41598-024-56433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
The partial understanding of the biological events that occur during normothermic machine perfusion (NMP) and particularly during prolonged perfusion might hinder its deployment in clinical transplantation. The aim of our study was to implement a rat model of prolonged NMP to characterize the bio-molecular phenotype and metabolism of the perfused organs. Livers (n = 5/group) were procured and underwent 4 h (NMP4h) or 12 h (NMP12h) NMP, respectively, using a perfusion fluid supplemented with an acellular oxygen carrier. Organs that were not exposed to any procedure served as controls (Native). All perfused organs met clinically derived viability criteria at the end of NMP. Factors related to stress-response and survival were increased after prolonged perfusion. No signs of oxidative damage were detected in both NMP groups. Evaluation of metabolite profiles showed preserved mitochondrial function, activation of Cori cycle, induction of lipolysis, acetogenesis and ketogenesis in livers exposed to 12 h-NMP. Increased concentrations of metabolites involved in glycogen synthesis, glucuronidation, bile acid conjugation, and antioxidant response were likewise observed. In conclusion, our NMP12h model was able to sustain liver viability and function, thereby deeply changing cell homeostasis to maintain a newly developed equilibrium. Our findings provide valuable information for the implementation of optimized protocols for prolonged NMP.
Collapse
Affiliation(s)
- Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy.
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Luigi Vivona
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vaira Valentina
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Andrea Schlegel
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| |
Collapse
|
4
|
Basta G, Melandro F, Babboni S, Del Turco S, Ndreu R, Torri F, Martinelli C, Silvestrini B, Peris A, Lazzeri C, Guarracino F, Morganti R, Maremmani P, Bertini P, De Simone P, Ghinolfi D. An extensive evaluation of hepatic markers of damage and regeneration in controlled and uncontrolled donation after circulatory death. Liver Transpl 2023; 29:813-826. [PMID: 36879554 DOI: 10.1097/lvt.0000000000000122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
Livers from donations after circulatory death (DCDs) are very sensitive to ischemia/reperfusion injury and thus need careful reconditioning, such as normothermic regional perfusion (NRP). So far, its impact on DCDs has not been thoroughly investigated. This pilot cohort study aimed to explore the NRP impact on liver function by evaluating dynamic changes of circulating markers and hepatic gene expression in 9 uncontrolled DCDs (uDCDs) and 10 controlled DCDs. At NRP start, controlled DCDs had lower plasma levels of inflammatory and liver damage markers, including α-glutathione s-transferase, sorbitol-dehydrogenase, malate dehydrogenase 1, liver-type arginase-1, and keratin-18, but higher levels of osteopontin, sFas, flavin mononucleotide, and succinate than uDCDs. During 4-hour NRP, some damage and inflammatory markers increased in both groups, while IL-6, HGF, and osteopontin increased only in uDCDs. At the NRP end, the tissue expression of early transcriptional regulators, apoptosis, and autophagy mediators was higher in uDCDs than in controlled DCDs. In conclusion, despite initial differences in liver damage biomarkers, the uDCD group was characterized by a major gene expression of regenerative and repair factors after the NRP procedure. Correlative analysis among circulating/tissue biomarkers and the tissue congestion/necrosis degree revealed new potential candidate biomarkers.
Collapse
Affiliation(s)
- Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabio Melandro
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Francesco Torri
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Caterina Martinelli
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | | | - Adriano Peris
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), Florence, Italy
| | - Chiara Lazzeri
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), Florence, Italy
| | - Fabio Guarracino
- Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Riccardo Morganti
- Division of Medical Statistics, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paolo Maremmani
- Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Pietro Bertini
- Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| |
Collapse
|
5
|
Fukai M, Sakamoto S, Bochimoto H, Zin NKM, Shibata K, Ishikawa T, Shimada S, Kawamura N, Fujiyoshi M, Fujiyoshi S, Nakamura K, Shimamura T, Taketomi A. Hypothermic Machine Perfusion with Hydrogen Gas Reduces Focal Injury in Rat Livers but Fails to Restore Organ Function. Transplant Proc 2023:S0041-1345(23)00096-9. [PMID: 36948959 DOI: 10.1016/j.transproceed.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND We have previously reported the efficacy of post-reperfusion H2 gas treatment in cold storage (CS) and subsequent reperfusion of the rat liver. The present study aimed to evaluate the effect of H2 gas treatment during hypothermic machine perfusion (HMP) in rat livers retrieved from donation after circulatory death (DCD) and elucidate the mechanism of action of H2 gas. METHODS Liver grafts were procured from rats after 30 min of cardiopulmonary arrest. The graft was subjected to HMP for 3 hours at 7°C using Belzer MPS with or without dissolved H2 gas. The graft was reperfused using an isolated perfused rat liver apparatus at 37°C for 90 minutes. Perfusion kinetics, liver damage, function, apoptosis, and ultrastructure were evaluated. RESULTS Portal venous resistance, bile production, and oxygen consumption rates were identical in the CS, MP, and MP-H2 groups. Liver enzyme leakage was suppressed by MP (vs control), whereas H2 treatment did not show a combination effect. Histopathology revealed poorly stained areas with a structural deformity just below the liver surface in the CS and MP groups, whereas these findings disappeared in the MP-H2 group. The apoptotic index in the CS and MP groups was high but decreased in the MP-H2 group. Mitochondrial cristae were damaged in the CS group but preserved in the MP and MP-H2 groups. CONCLUSIONS In conclusion, HMP and H2 gas treatment are partly effective in DCD rat livers but insufficient. Hypothermic machine perfusion can improve focal microcirculation and preserve mitochondrial ultrastructure.
Collapse
Affiliation(s)
- Moto Fukai
- Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sodai Sakamoto
- Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroki Bochimoto
- Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan
| | | | - Kengo Shibata
- Gastroenterological Surgery 1, Hokkaido University Hospital, Sapporo, Japan
| | - Takahisa Ishikawa
- Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shingo Shimada
- Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masato Fujiyoshi
- Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sunao Fujiyoshi
- Gastroenterological Surgery 1, Hokkaido University Hospital, Sapporo, Japan
| | - Kosei Nakamura
- Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Gastroenterological Surgery 1, Hokkaido University Hospital, Sapporo, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, Schlegel A. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022; 27:434-445. [PMID: 35950880 DOI: 10.1097/mot.0000000000001015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review describes the role of mitochondria in ischemia-reperfusion-injury (IRI). RECENT FINDINGS Mitochondria are the power-house of our cells and play a key role for the success of organ transplantation. With their respiratory chain, mitochondria are the main energy producers, to fuel metabolic processes, control cellular signalling and provide electrochemical integrity. The mitochondrial metabolism is however severely disturbed when ischemia occurs. Cellular energy depletes rapidly and various metabolites, including Succinate accumulate. At reperfusion, reactive oxygen species are immediately released from complex-I and initiate the IRI-cascade of inflammation. Prior to the development of novel therapies, the underlying mechanisms should be explored to target the best possible mitochondrial compound. A clinically relevant treatment should recharge energy and reduce Succinate accumulation before organ implantation. While many interventions focus instead on a specific molecule, which may inhibit downstream IRI-inflammation, mitochondrial protection can be directly achieved through hypothermic oxygenated perfusion (HOPE) before transplantation. SUMMARY Mitochondria are attractive targets for novel molecules to limit IRI-associated inflammation. Although dynamic preservation techniques could serve as delivery tool for new therapeutic interventions, their own inherent mechanism should not only be studied, but considered as key treatment to reduce mitochondrial injury, as seen with the HOPE-approach.
Collapse
Affiliation(s)
- Rebecca Panconesi
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Jeannette Widmer
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Janina Eden
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| | - Philipp Dutkowski
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Viability assessment is one of the main indications for machine perfusion (MP) in liver transplantation. This review summarizes the rationale, evolution and limitations of proposed viability criteria and suggests a framework for future studies. RECENT FINDINGS Liver viability is most frequently assessed during normothermic MP by combining parameters relative to perfusate and bile composition, vascular flows and macroscopic aspect. Assessment protocols are largely heterogeneous and have significantly evolved over time, also within the same group, reflecting the ongoing evolution of the subject. Several recent preclinical studies using discarded human livers or animal models have explored other approaches to viability assessment. During hypothermic MP, perfusate flavin mononucleotide has emerged as a promising biomarker of mitochondrial injury and function. Most studies on the subject suffer from limitations, including low numbers, lack of multicenter validation, and subjective interpretation of some viability parameters. SUMMARY MP adds a further element of complexity in the process of assessing the quality of a liver graft. Understanding the physiology of the parameters included in the different assessment protocols is necessary for their correct interpretation. Despite the possibility of assessing liver viability during MP, the importance of donor-recipient matching and operational variables should not be disregarded.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U - Liver Transplant Unit. Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino - University of Turin, Turin
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Renato Romagnoli
- General Surgery 2U - Liver Transplant Unit. Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino - University of Turin, Turin
| |
Collapse
|
8
|
Amin A, Panayotova G, Guarrera JV. Hypothermic machine perfusion for liver graft preservation. Curr Opin Organ Transplant 2022; 27:98-105. [PMID: 35184093 DOI: 10.1097/mot.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Ex-vivo machine perfusion has emerged as a promising alternative to static cold storage (SCS) for preservation of liver grafts over the last decade. This review describes the mechanistic benefits associated with hypothermic machine perfusion (HMP) for preservation of liver grafts and highlights clinical outcomes of liver transplantation using HMP technology. RECENT FINDINGS Over the last decade, several single-centre studies have shown decreased biliary complications, decreased early allograft dysfunction (EAD) rates and improved patient survival in liver transplant recipients after application of HMP for liver graft preservation. This has led to initiation of prospective, multicentre, randomized controlled trials (RCTs) in both Europe and North America focused on clinical outcomes in liver transplant recipients using HMP-preserved liver grafts. In addition, recent single-centre studies have shown the utility of perfusate biomarker analysis during HMP in predicting EAD after liver transplantation. SUMMARY HMP technology has potential to increase the available donor liver organ pool for liver transplant recipients and improve clinical outcomes after liver transplantation. Broader clinical application of HMP in resuscitation and preservation of liver grafts is anticipated over the next decade once regulatory, logistical and financial challenges are overcome.
Collapse
Affiliation(s)
- Arpit Amin
- Division of Abdominal Transplant Surgery, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | | |
Collapse
|
9
|
Quantitative Metabolomics of Tissue, Perfusate, and Bile from Rat Livers Subjected to Normothermic Machine Perfusion. Biomedicines 2022; 10:biomedicines10030538. [PMID: 35327340 PMCID: PMC8945564 DOI: 10.3390/biomedicines10030538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Machine perfusion (MP) allows the maintenance of liver cells in a metabolically active state ex vivo and can potentially revert metabolic perturbations caused by donor warm ischemia, procurement, and static cold storage (SCS). The present preclinical research investigated the metabolic outcome of the MP procedure by analyzing rat liver tissue, bile, and perfusate samples by means of high-field (600 MHz) nuclear magnetic resonance (NMR) spectroscopy. An established rat model of normothermic MP (NMP) was used. Experiments were carried out with the addition of an oxygen carrier (OxC) to the perfusion fluid (OxC-NMP, n = 5) or without (h-NMP, n = 5). Bile and perfusate samples were collected throughout the procedure, while biopsies were only taken at the end of NMP. Two additional groups were: (1) Native, in which tissue or bile specimens were collected from rats in resting conditions; and (2) SCS, in which biopsies were taken from cold-stored livers. Generally, NMP groups showed a distinctive metabolomic signature in all the analyzed biological matrices. In particular, many of the differentially expressed metabolites were involved in mitochondrial biochemical pathways. Succinate, acetate, 3-hydroxybutyrate, creatine, and O-phosphocholine were deeply modulated in ex vivo perfused livers compared to both the Native and SCS groups. These novel results demonstrate a broad modulation of mitochondrial metabolism during NMP that exceeds energy production and redox balance maintenance.
Collapse
|