1
|
Buachi C, Thananukul K, Khongphinitbunjong K, Molloy R, Punyamoonwongsa P. A single-step extraction and immobilization of soybean lipolytic enzymes by using a purpose-designed copolymer of styrene and maleic acid as a membrane lysis agent. Heliyon 2024; 10:e31313. [PMID: 38831811 PMCID: PMC11145489 DOI: 10.1016/j.heliyon.2024.e31313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Approaches aiming to recover proteins without denaturation represent attractive strategies. To accomplish this, a membrane lysis agent based on poly(styrene-alt-maleic acid) or PSMA was synthesized by photopolymerization using Irgacure® 2959 and carbon tetrabromide (CBr4) as a radical initiator and a reversible chain transfer agent, respectively. Structural elucidation of our in-house synthesized PSMA, so-called photo-PSMA, was performed by using NMR spectroscopy. The use of this photo-PSMA in soybean enzyme extraction was also demonstrated for the first time in this study. Without a severe cell rupture, energy input or any organic solvent, recovery of lipolytic enzymes directly into nanometric-sized particles was accomplished in one-step process. Due to the improved structural regularity along the photo-PSMA backbone, the most effective protective reservoir for enzyme immobilization was generated through the PSMA aggregation. Formation of such reservoir enabled soybean enzymes to be shielded from the surroundings and resolved in their full functioning state. This was convinced by the increased specific lipolytic activity to 1,950 mU/mg, significantly higher than those of sodium dodecyl sulfate (SDS) and the two commercially-available PSMA sources (1000P and 2000P). Our photo-PSMA had thus demonstrated its great potential for cell lyse application, especially for soybean hydrolase extraction.
Collapse
Affiliation(s)
- Chatmani Buachi
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | | | - Robert Molloy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | |
Collapse
|
2
|
Iannotta D, A A, Lai A, Nair S, Koifman N, Lappas M, Salomon C, Wolfram J. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307240. [PMID: 38100284 DOI: 10.1002/smll.202307240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Na'ama Koifman
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Martha Lappas
- University of Melbourne, Department of Obstetrics and Gynaecology, Australia, and Mercy Hospital for Women, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
3
|
Hosokawa M, Inaba M, Tanaka M, Ogawara KI. Uptake Pathway of Styrene Maleic Acid Copolymer-Coated Lipid Emulsions Under Acidic Tumor Microenvironment. J Pharm Sci 2024; 113:1047-1053. [PMID: 37844758 DOI: 10.1016/j.xphs.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
The purpose of this study was to elucidate and compare styrene maleic acid copolymer (SMA)-coated lipid emulsions (SMA emulsions) uptake pathway in vascular endothelial cells and surrounding cancer cells under not only neutral but also acidic pH, which is often observed in tumor microenvironment. DiI-labeled SMA emulsions were prepared using 1-palmitoyl-2-oleoyl-sn‑glycero-3-phosphocholine and triolein. In murine melanoma B16-BL6 (B16) cells and human umbilical vein endothelial cells (HUVEC), DiI-labeled SMA emulsions uptake under near-neutral (pH 7.4) and acidic (pH 6.0) conditions was determined by fluorescent analysis. SMA emulsions were taken up more efficiently into HUVEC than B16 cells under acidic condition in a temperature-dependent manner. Uptake study using endocytosis inhibitors showed that SMA emulsions were taken up by macropinocytosis and clathrin-mediated endocytosis in B16 cells. In HUVEC, however, they were taken up by clathrin- and caveolae-independent, but dynamin-dependent pathway. SMA emulsions would be internalized efficiently into vascular endothelial cells as well as cancer cells under acidic microenvironment via different endocytosis pathways. SMA emulsions could be a promising drug delivery carrier for anti-angiogenic drugs.
Collapse
Affiliation(s)
- Mika Hosokawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Moeka Inaba
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| |
Collapse
|
4
|
Islam R, Kotalík K, Šubr V, Gao S, Zhou JR, Yokomizo K, Etrych T, Fang J. HPMA copolymer conjugated 5-aminolevulinic acid exhibits superior efficacy for photodynamic therapy with tumor-responsive and targeting properties. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102636. [PMID: 36549553 DOI: 10.1016/j.nano.2022.102636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
In this study, we developed a nanoformulation of 5-aminolevulinic acid (5-ALA) for tumor-targeted photodynamic therapy, in which 5-ALA was conjugated with a biocompatible polymer N-(2-hydroxypropyl)methacrylamide (HPMA) through the hydrazone bond, i.e., P-ALA. P-ALA behaves as the nano-sized molecule with an average size of 5.5 nm in aqueous solution. P-ALA shows a largely increased release rate in acidic pH than physiological pH, suggesting the rapid release profile in acidic tumor environment. P-ALA did not show apparent cytotoxicity up to 0.1 mg/ml, however, under light irradiation, remarkable cell death was induced with the IC50 of 20-30 μg/ml. More importantly, we found significantly higher tumor accumulation of P-ALA than 5-ALA which benefit from its nano-size by taking advantage of the enhanced permeability and retention (EPR) effect. Consequently, P-ALA exhibited much improved in vivo antitumor efficacy without any apparent side effects. We thus anticipate the application of P-ALA as a nano-designed photosensitizer for anticancer photodynamic therapy.
Collapse
Affiliation(s)
- Rayhanul Islam
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Kevin Kotalík
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 160 00 Prague 6, Czech Republic.
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 160 00 Prague 6, Czech Republic.
| | - Shanghui Gao
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Jian-Rong Zhou
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Kazumi Yokomizo
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 160 00 Prague 6, Czech Republic.
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.
| |
Collapse
|
5
|
Abstract
In 1903, Von Tappeiner and Jesionek [...].
Collapse
Affiliation(s)
- Kyungsu Kang
- Natural Product Informatics Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Gangwon-do, Korea
| | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
6
|
Poly(styrene-co-maleic Acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. J Pers Med 2022; 12:jpm12030493. [PMID: 35330492 PMCID: PMC8951206 DOI: 10.3390/jpm12030493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Targeted therapy by using nanomedicines based on the enhanced permeability and retention (EPR) effect is becoming a promising anticancer strategy. Many nano-designed photosensitizers (PSs) for photodynamic therapy (PDT) have been developed which show superior therapeutic potentials than free PS. To further understand the advantages of nano-designed PS, in this study, we used styrene-co-maleyl telomer (SMA) as a polymer platform to prepare a micellar type of PS with two well-characterized PSs—rose bengal (RB) and methylene blue (MB)—and evaluated the outmatching benefits of SMA-PS micelles, especially focusing on the singlet oxygen (1O2) generation capacity and intracellular uptake profiles. In aqueous solutions, SMA-PS self-assembles to form micelles by non-covalent interactions between PS and SMA. SMA-PS micelles showed discrete distributions by dynamic light scattering having a mean particle size of 18–30 nm depending on the types of SMA and different PSs. The hydrodynamic size of SMA-PS was evaluated by Sephadex chromatography and it found to be 30–50 kDa. In the presence of human serum albumin, the sizes of SMA-PS remarkably increased, suggesting the albumin-binding property. 1O2 generation from the SMA-PS micelle was determined by electron spin resonance, in which the SMA-PS micelle showed comparatively more photo-stable, and consequently a more durable and constant, 1O2 generation capability than free PS. Moreover, intracellular uptake of SMA-PS micelles was extensively faster and higher than free PS, especially in tumor cells. Taken together, SMA-PS micelles appear highly advantageous for photodynamic therapy in addition to its capacity in utilizing the EPR effect for tumor targeted delivery.
Collapse
|