1
|
Yang S, Zhao Y, Tan Y, Zheng C. Identification of microtubule-associated biomarker using machine learning methods in osteonecrosis of the femoral head and osteosarcoma. Heliyon 2024; 10:e31853. [PMID: 38868049 PMCID: PMC11168324 DOI: 10.1016/j.heliyon.2024.e31853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Background This study aims to explore the microtubule-associated gene signatures and molecular processes shared by osteonecrosis of the femoral head (ONFH) and osteosarcoma (OS). Methods Datasets from the TARGET and GEO databases were subjected to bioinformatics analysis, including the functional enrichment analysis of genes shared by ONFH and OS. Prognostic genes were identified using univariate and multivariate Cox regression analyses to develop a risk score model for predicting overall survival and immune characteristics. Furthermore, LASSO and SVM-RFE algorithms identified biomarkers for ONFH, which were validated in OS. Function prediction, ceRNA network analysis, and gene-drug interaction network construction were subsequently conducted. Biomarker expression was then validated on clinical samples by using qPCR. Results A total of 14 microtubule-associated disease genes were detected in ONFH and OS. Subsequently, risk score model based on four genes was then created, revealing that patients with low-risk exhibited superior survival outcomes compared with those with high-risk. Notably, ONFH with low-risk profiles may manifest an antitumor immune microenvironment. Moreover, by utilizing LASSO and SVM-RFE algorithms, four diagnostic biomarkers were pinpointed, enabling effective discrimination between patients with ONFH and healthy individuals as well as between OS and normal tissues. Additionally, 21 drugs targeting these biomarkers were predicted, and a comprehensive ceRNA network comprising four mRNAs, 71 miRNAs, and 98 lncRNAs was established. The validation of biomarker expression in clinical samples through qPCR affirmed consistency with the results of bioinformatics analysis. Conclusion Microtubule-associated genes may play pivotal roles in OS and ONFH. Additionally, a prognostic model was constructed, and four genes were identified as potential biomarkers and therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, PR China
| | - Ying Zhao
- Department of Orthopedics, GuiQian International General Hospital, GuiYang, PR China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, PR China
| | - Chao Zheng
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Children S Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
2
|
Kuang Y, Ye N, Kyani A, Ljungman M, Paulsen M, Chen H, Zhou M, Wild C, Chen H, Zhou J, Neamati N. Induction of Genes Implicated in Stress Response and Autophagy by a Novel Quinolin-8-yl-nicotinamide QN523 in Pancreatic Cancer. J Med Chem 2022; 65:6133-6156. [PMID: 35439009 PMCID: PMC9195374 DOI: 10.1021/acs.jmedchem.1c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a cytotoxicity-based phenotypic screen of a highly diverse library of 20,000 small-molecule compounds, we identified a quinolin-8-yl-nicotinamide, QN519, as a promising lead. QN519 represents a novel scaffold with drug-like properties, showing potent in vitro cytotoxicity in a panel of 12 cancer cell lines. Subsequently, lead optimization campaign generated compounds with IC50 values < 1 μM. An optimized compound, QN523, shows significant in vivo efficacy in a pancreatic cancer xenograft model. QN523 treatment significantly increased the expression of HSPA5, DDIT3, TRIB3, and ATF3 genes, suggesting activation of the stress response pathway. We also observed a significant increase in the expression of WIPI1, HERPUD1, GABARAPL1, and MAP1LC3B, implicating autophagy as a major mechanism of action. Due to the lack of effective treatments for pancreatic cancer, discovery of novel agents such as the QN series of compounds with unique mechanism of action has the potential to fulfill a clear unmet medical need.
Collapse
Affiliation(s)
- Yuting Kuang
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haijun Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Christopher Wild
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|