1
|
Shu Z, Dwivedi B, Switchenko JM, Yu DS, Deng X. PD-L1 deglycosylation promotes its nuclear translocation and accelerates DNA double-strand-break repair in cancer. Nat Commun 2024; 15:6830. [PMID: 39122729 PMCID: PMC11316045 DOI: 10.1038/s41467-024-51242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Resistance to radiotherapy is a major barrier during cancer treatment. Here using genome-scale CRISPR/Cas9 screening, we identify CD274 gene, which encodes PD-L1, to confer lung cancer cell resistance to ionizing radiation (IR). Depletion of endogenous PD-L1 delays the repair of IR-induced DNA double-strand breaks (DSBs) and PD-L1 loss downregulates non-homologous end joining (NHEJ) while overexpression of PD-L1 upregulates NHEJ. IR induces translocation of PD-L1 from the membrane into nucleus dependent on deglycosylation of PD-L1 at N219 and CMTM6 and leads to PD-L1 recruitment to DSBs foci. PD-L1 interacts with Ku in the nucleus and enhances Ku binding to DSB DNA. The interaction between the IgC domain of PD-L1 and the core domain of Ku is required for PD-L1 to accelerate NHEJ-mediated DSB repair and produce radioresistance. Thus, PD-L1, in addition to its immune inhibitory activity, acts as mechanistic driver for NHEJ-mediated DSB repair in cancer.
Collapse
Affiliation(s)
- Zhen Shu
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Bioinformatics and Systems Biology Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
3
|
Mousa M, Liang Y, Tung LT, Wang H, Krawczyk C, Langlais D, Nijnik A. Chromatin-binding deubiquitinase MYSM1 acts in haematopoietic progenitors to control dendritic cell development and to program dendritic cell responses to microbial stimulation. Immunology 2024; 172:109-126. [PMID: 38316548 DOI: 10.1111/imm.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Dendritic cells (DCs) are the most significant antigen presenting cells of the immune system, critical for the activation of naïve T cells. The pathways controlling DC development, maturation, and effector function therefore require precise regulation to allow for an effective induction of adaptive immune response. MYSM1 is a chromatin binding deubiquitinase (DUB) and an activator of gene expression via its catalytic activity for monoubiquitinated histone H2A (H2A-K119ub), which is a highly abundant repressive epigenetic mark. MYSM1 is an important regulator of haematopoiesis in mouse and human, and a systemic constitutive loss of Mysm1 in mice results in a depletion of many haematopoietic progenitors, including DC precursors, with the downstream loss of most DC lineage cells. However, the roles of MYSM1 at the later checkpoints in DC development, maturation, activation, and effector function at present remain unknown. In the current work, using a range of novel mouse models (Mysm1flCreERT2, Mysm1flCD11c-cre, Mysm1DN), we further the understanding of MYSM1 functions in the DC lineage: assessing the requirement for MYSM1 in DC development independently of other complex developmental phenotypes, exploring its role at the later checkpoints in DC maintenance and activation in response to microbial stimulation, and testing the requirement for the DUB catalytic activity of MYSM1 in these processes. Surprisingly, we demonstrate that MYSM1 expression and catalytic activity in DCs are dispensable for the maintenance of DC numbers in vivo or for DC activation in response to microbial stimulation. In contrast, MYSM1 acts via its DUB catalytic activity specifically in haematopoietic progenitors to allow normal DC lineage development, and its loss results not only in a severe DC depletion but also in the production of functionally altered DCs, with a dysregulation of many housekeeping transcriptional programs and significantly altered responses to microbial stimulation.
Collapse
Affiliation(s)
- Marwah Mousa
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Connie Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan, United States
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Lee TA, Tsai EY, Liu SH, Hsu Hung SD, Chang SJ, Chao CH, Lai YJ, Yamaguchi H, Li CW. Post-translational Modification of PD-1: Potential Targets for Cancer Immunotherapy. Cancer Res 2024; 84:800-807. [PMID: 38231470 PMCID: PMC10940856 DOI: 10.1158/0008-5472.can-23-2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Activation of effector T cells leads to upregulation of PD-1, which can inhibit T-cell activity following engagement with its ligand PD-L1. Post-translational modifications (PTM), including glycosylation, phosphorylation, ubiquitination, and palmitoylation, play a significant role in regulating PD-1 protein stability, localization, and interprotein interactions. Targeting PTM of PD-1 in T cells has emerged as a potential strategy to overcome PD-1-mediated immunosuppression in cancer and enhances antitumor immunity. The regulatory signaling pathways that induce PTM of PD-1 can be suppressed with small-molecule inhibitors, and mAbs can directly target PD-1 PTMs. Preliminary outcomes from exploratory studies suggest that focusing on the PTM of PD-1 has strong therapeutic potential and can enhance the response to anti-PD-1.
Collapse
Affiliation(s)
- Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - En-Yun Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Hou Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Mishra R, Sukhbaatar A, Mori S, Kodama T. Metastatic lymph node targeted CTLA4 blockade: a potent intervention for local and distant metastases with minimal ICI-induced pneumonia. J Exp Clin Cancer Res 2023; 42:132. [PMID: 37259163 DOI: 10.1186/s13046-023-02645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) elicits a strong and durable therapeutic response, but its application is limited by disparate responses and its associated immune-related adverse events (irAEs). Previously, in a murine model of lymph node (LN) metastasis, we showed that intranodal administration of chemotherapeutic agents using a lymphatic drug delivery system (LDDS) elicits stronger therapeutic responses in comparison to systemic drug delivery approaches, while minimizing systemic toxicity, due to its improved pharmacokinetic profile at the intended site. Importantly, the LN is a reservoir of immunotherapeutic targets. We therefore hypothesized that metastatic LN-targeted ICB can amplify anti-tumor response and uncouple it from ICB-induced irAEs. METHODS To test our hypothesis, models of LN and distant metastases were established with luciferase expressing LM8 cells in MXH10/Mo-lpr/lpr mice, a recombinant inbred strain of mice capable of recapitulating ICB-induced interstitial pneumonia. This model was used to interrogate ICB-associated therapeutic response and immune related adverse events (irAEs) by in vivo imaging, high-frequency ultrasound imaging and histopathology. qPCR and flowcytometry were utilized to uncover the mediators of anti-tumor immunity. RESULTS Tumor-bearing LN (tbLN)-directed CTLA4 blockade generated robust anti-tumor response against local and systemic metastases, thereby improving survival. The anti-tumor effects were accompanied by an upregulation of effector CD8T cells in the tumor-microenvironment and periphery. In comparison, non-specific CTLA4 blockade was found to elicit weaker anti-tumor effect and exacerbated ICI-induced irAEs, especially interstitial pneumonia. Together these data highlight the importance of tbLN-targeted checkpoint blockade for efficacious response. CONCLUSIONS Intranodal delivery of immune checkpoint inhibitors to metastatic LN can potentiate therapeutic response while minimizing irAEs stemming from systemic lowering of immune activation threshold.
Collapse
Affiliation(s)
- Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
6
|
Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network. Mar Drugs 2023; 21:md21020132. [PMID: 36827173 PMCID: PMC9963441 DOI: 10.3390/md21020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Epstein-Barr virus (EBV) infects 95% of the world's population and persists latently in the body. It immortalizes B-cells and is associated with lymphomas. LCLs (lymphoblastoid cell lines, EBV latency III B-cells) inhibit anti-tumoral T-cell response following PD-L1 overexpression (programmed death-ligand 1 immune checkpoint). Many cancer cells, including some DLBCLs (diffuse large B-cell lymphomas), also overexpress PD-L1. Immunotherapies are based on inhibition of PD-L1/PD-1 interactions but present some dose-dependent toxicities. We aim to find new strategies to improve their efficiency by decreasing PD-L1 expression. Fucoidan, a polysaccharide extracted from brown seaweed, exhibits immunomodulatory and anti-tumor activities depending on its polymerization degree, but data are scarce on lymphoma cells or immune checkpoints. LCLs and DLBCLs cells were treated with native fucoidan (Fucus vesiculosus) or original very-low-molecular-weight fucoidan formulas (vLMW-F). We observed cell proliferation decrease and apoptosis induction increase with vLMW-F and no toxicity on normal B- and T-cells. We highlighted a decrease in transcriptional and PD-L1 surface expression, even more efficient for vLMW than native fucoidan. This can be explained by actin network alteration, suggesting lower fusion of secretory vesicles carrying PD-L1 with the plasma membrane. We propose vLMW-F as potential adjuvants to immunotherapy due to their anti-proliferative and proapoptotic effects and ability to decrease PD-L1 membrane expression.
Collapse
|
7
|
Effects of small molecule-induced dimerization on the programmed death ligand 1 protein life cycle. Sci Rep 2022; 12:21286. [PMID: 36494467 PMCID: PMC9734112 DOI: 10.1038/s41598-022-25417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) checkpoint blockade is central to Immuno-Oncology based therapies, and alternatives to antibody blockers of this interaction are an active area of research due to antibody related toxicities. Recently, small molecule compounds that induce PD-L1 dimerization and occlusion of PD-1 binding site have been identified and developed for clinical trials. This mechanism invokes an oligomeric state of PD-L1 not observed in cells previously, as PD-L1 is generally believed to function as a monomer. Therefore, understanding the cellular lifecycle of the induced PD-L1 dimer is of keen interest. Our report describes a moderate but consistent increase in the PD-L1 rate of degradation observed upon protein dimerization as compared to the monomer counterpart. This subtle change, while not resolved by measuring total PD-L1 cellular levels by western blotting, triggered investigations of the overall protein distribution across various cellular compartments. We show that PD-L1 dimerization does not lead to rapid internalization of neither transfected nor endogenously expressed protein forms. Instead, evidence is presented that dimerization results in retention of PD-L1 intracellularly, which concomitantly correlates with its reduction on the cell surface. Therefore, the obtained data for the first time points to the ability of small molecules to induce dimerization of the newly synthesized PD-L1 in addition to the protein already present on the plasma membrane. Overall, this work serves to improve our understanding of this important target on a molecular level in order to guide advances in drug development.
Collapse
|
8
|
Sové RJ, Verma BK, Wang H, Ho WJ, Yarchoan M, Popel AS. Virtual clinical trials of anti-PD-1 and anti-CTLA-4 immunotherapy in advanced hepatocellular carcinoma using a quantitative systems pharmacology model. J Immunother Cancer 2022; 10:e005414. [PMID: 36323435 PMCID: PMC9639136 DOI: 10.1136/jitc-2022-005414] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and is the third-leading cause of cancer-related death worldwide. Most patients with HCC are diagnosed at an advanced stage, and the median survival for patients with advanced HCC treated with modern systemic therapy is less than 2 years. This leaves the advanced stage patients with limited treatment options. Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) or its ligand, are widely used in the treatment of HCC and are associated with durable responses in a subset of patients. ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) also have clinical activity in HCC. Combination therapy of nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) is the first treatment option for HCC to be approved by Food and Drug Administration that targets more than one immune checkpoints. METHODS In this study, we used the framework of quantitative systems pharmacology (QSP) to perform a virtual clinical trial for nivolumab and ipilimumab in HCC patients. Our model incorporates detailed biological mechanisms of interactions of immune cells and cancer cells leading to antitumor response. To conduct virtual clinical trial, we generate virtual patient from a cohort of 5,000 proposed patients by extending recent algorithms from literature. The model was calibrated using the data of the clinical trial CheckMate 040 (ClinicalTrials.gov number, NCT01658878). RESULTS Retrospective analyses were performed for different immune checkpoint therapies as performed in CheckMate 040. Using machine learning approach, we predict the importance of potential biomarkers for immune blockade therapies. CONCLUSIONS This is the first QSP model for HCC with ICIs and the predictions are consistent with clinically observed outcomes. This study demonstrates that using a mechanistic understanding of the underlying pathophysiology, QSP models can facilitate patient selection and design clinical trials with improved success.
Collapse
Affiliation(s)
- Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Babita K Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Won Jin Ho
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Xie Y, Yan F, Wang X, Yu L, Yan H, Pu Q, Li W, Yang Z. Mechanisms and network pharmacological analysis of Yangyin Fuzheng Jiedu prescription in the treatment of hepatocellular carcinoma. Cancer Med 2022; 12:3237-3259. [PMID: 36043445 PMCID: PMC9939140 DOI: 10.1002/cam4.5064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To identify the key drugs of Yangyin Fuzheng Jiedu prescription (YFJP) and investigate their therapeutic effects against hepatocellular carcinoma (HCC) and the potential mechanism using network pharmacology. METHODS The H22 tumor-bearing mouse model was established. Thirty male BALB/c mice were divided randomly into five groups. The mice were orally treated with either disassembled prescriptions of YFJP or saline solution continuously for 14 days. The mice were weighed every 2 days during treatment and the appearance of tumors was observed by photographing. The tumor inhibition rate and the spleen and thymus indexes were calculated. Hematoxylin and eosin and immunohistochemical staining were performed to observe the histological changes and tumor-infiltrating lymphocytes. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. The proportion of CD8+ T cells and the expression of programmed cell death protein 1 (PD-1), T cell immunoglobulin domain and mucin domain-3 (Tim-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were analyzed using flow cytometry. The production of serum cytokines was detected using the Milliplex® MAP mouse high sensitivity T cell panel kit. The active components of the key drugs and HCC-related target proteins were obtained from the corresponding databases. The putative targets for HCC treatment were screened by target mapping, and potential active components were screened by constructing a component-target network. The interactive targets of putative targets were obtained from the STRING database to construct the protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed based on potential targets. The gene-gene inner and component-target-pathway networks were constructed and analyzed to screen the key targets. Western blotting was used to evaluate the protein expression of the key targets in the tumor-bearing mouse model. The binding activity of the key targets and compounds was verified by molecular docking. RESULTS Among the three disassembled prescriptions of YFJP, the Fuzheng prescription (FZP) showed significant antitumor effects and inhibited weight loss during the treatment of H22 tumor-bearing mice. FZP increased the immune organ index and the levels of CD8+ and CD3+ T cells in the spleen and peripheral blood of H22 tumor-bearing mice. FZP also reduced the expression of PD-1, TIGIT, and TIM3 in CD8+ T cells and the production of IL-10, IL-4, IL-6, and IL-1β. Network pharmacology and experimental validation showed that the key targets of FZP in the treatment of HCC were PIK3CA, TP53, MAPK1, MAPK3, and EGFR. The therapeutic effect on HCC was evaluated based on HCC-related signaling pathways, including the PIK3-Akt signaling pathway, PD-L1 expression, and PD-1 checkpoint pathway in cancer. GO enrichment analysis indicated that FZP positively regulated the molecular functions of transferases and kinases on the cell surface through membrane raft, membrane microarea, and other cell components to inhibit cell death and programmed cell death. CONCLUSION FZP was found to be the key disassembled prescription of YFJP that exerted antitumor and immunoregulatory effects against HCC. FZP alleviated T cell exhaustion and improved the immunosuppressive microenvironment via HCC-related targets, pathways, and biological processes.
Collapse
Affiliation(s)
- Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Fengna Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Weihong Li
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingP.R. China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| |
Collapse
|
10
|
Zhang H, Wu Z, Hu D, Yan M, Sun J, Lai J, Bai L. Immunotherapeutic Targeting of NG2/CSPG4 in Solid Organ Cancers. Vaccines (Basel) 2022; 10:vaccines10071023. [PMID: 35891187 PMCID: PMC9321363 DOI: 10.3390/vaccines10071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Neuro-glia antigen 2/chondroitin sulfate proteoglycan 4 (NG2/CSPG4, also called MCSP, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a large cell-surface antigen and an unusual cell membrane integral glycoprotein frequently expressed on undifferentiated precursor cells in multiple solid organ cancers, including cancers of the liver, pancreas, lungs, and kidneys. It is a valuable molecule involved in cancer cell adhesion, invasion, spreading, angiogenesis, complement inhibition, and signaling. Although the biological significance underlying NG2/CSPG4 proteoglycan involvement in cancer progression needs to be better defined, based on the current evidence, NG2/CSPG4+ cells, such as pericytes (PCs, NG2+/CD146+/PDGFR-β+) and cancer stem cells (CSCs), are closely associated with the liver malignancy, hepatocellular carcinoma (HCC), pancreatic malignancy, and pancreatic ductal adenocarcinoma (PDAC) as well as poor prognoses. Importantly, with a unique method, we successfully purified NG2/CSPG4-expressing cells from human HCC and PDAC vasculature tissue blocks (by core needle biopsy). The cells appeared to be spheres that stably expanded in cultures. As such, these cells have the potential to be used as sources of target antigens. Herein, we provide new information on the possibilities of frequently selecting NG2/CSPG4 as a solid organ cancer biomarker or exploiting expressing cells such as CSCs, or the PG/chondroitin sulfate chain of NG2/CSPG4 on the cell membrane as specific antigens for the development of antibody- and vaccine-based immunotherapeutic approaches to treat these cancers.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Zhenyu Wu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Min Yan
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Department of Nuclear Medicine, The First Affiliated Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Jing Sun
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Department of Nuclear Medicine, The First Affiliated Hospital, Shanxi Medical University, Taiyuan 030000, China
- Correspondence: ; Tel.: +86-23-68765709; Fax: +86-2365462170
| |
Collapse
|