1
|
Ismardi A, Gunawan TD, Suhendi A, Fathona IW. Study of graphene incorporation into ZnO-PVA nanocomposites modified electrode for sensitive detection of cadmium. Heliyon 2024; 10:e31565. [PMID: 38832283 PMCID: PMC11145211 DOI: 10.1016/j.heliyon.2024.e31565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
The presence of heavy metals often causes significant health risks, particularly cadmium, which is known for its high toxicity. In this study, a glassy carbon electrode was successfully modified by incorporating ZnO-PVA-Graphene nanocomposite, leveraging the excellent electrical properties and electron mobility of the material. Comprehensive material analysis, including XRD, confirmed that ZnO maintained its hexagonal wurtzite crystal structure despite the addition of graphene. Moreover, FESEM analysis showed that increasing graphene concentration led to a reduction in ZnO particle size by 85, 68, and 52 nm, respectively, accompanied by a decrease in band gap energy, as verified by UV-Vis measurements. Photoluminescence tests were also conducted and the result showed a noticeable blue shift in ZnO-PVA-Graphene nanocomposites compared to ZnO-PVA, specifically in the near band-edge (NBE) UV emission within the 374-379 nm wavelength range. Through I-V characterization, the optimal graphene concentration for cadmium detection was identified as 1.5 wt% in ZnO-PVA-Graphene nanocomposites, showing an approximate ohmic response. Meanwhile, square-wave voltammetry analysis of cadmium concentrations ranging from 0 to 80 ppm produced a coefficient of determination of 0.98926 and a Limit of Detection (LOD) of 9.88 ppm. These results showed the significant potential of ZnO-PVA-Graphene nanocomposites as a promising material for further development as an effective electrode modifier, enhancing the sensitivity of detection systems.
Collapse
Affiliation(s)
- Abrar Ismardi
- Department of Engineering Physics, School of Electrical Engineering, Telkom University, Bandung, Indonesia
| | - Theresia Deviyana Gunawan
- Department of Engineering Physics, School of Electrical Engineering, Telkom University, Bandung, Indonesia
| | - Asep Suhendi
- Department of Engineering Physics, School of Electrical Engineering, Telkom University, Bandung, Indonesia
| | - Indra Wahyudin Fathona
- Department of Engineering Physics, School of Electrical Engineering, Telkom University, Bandung, Indonesia
| |
Collapse
|
2
|
Abdelmoneim A, Elfayoumi MAK, Abdel-Wahab MS, Al-Enizi AM, Lee JK, Tawfik WZ. Enhanced solar-driven photoelectrochemical water splitting using nanoflower Au/CuO/GaN hybrid photoanodes. RSC Adv 2024; 14:16846-16858. [PMID: 38784418 PMCID: PMC11114097 DOI: 10.1039/d4ra01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Harnessing solar energy for large-scale hydrogen fuel (H2) production shows promise in addressing the energy crisis and ecological degradation. This study focuses on the development of GaN-based photoelectrodes for efficient photoelectrochemical (PEC) water splitting, enabling environmentally friendly H2 production. Herein, a novel nanoflower Au/CuO/GaN hybrid structure was successfully synthesized using a combination of methods including successive ionic layer adsorption and reaction (SILAR), RF/DC sputtering, and metal-organic chemical vapour deposition (MOCVD) techniques. Structural, morphological, and optical characteristics and elemental composition of the prepared samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy, and energy-dispersive X-ray (EDX) spectroscopy, respectively. PEC and electrochemical impedance measurements were performed for all samples. The nanoflower Au/CuO/GaN hybrid structure exhibited the highest photocurrent density of ∼4 mA cm-2 at 1.5 V vs. RHE in a Na2SO4 electrolyte with recorded moles of H2 of about 3246 μmol h-1 cm-2. By combining these three materials in a unique structure, we achieved improved performance in the conversion of solar energy into chemical energy. The nanoflower structure provides a large surface area and promotes light absorption while the Au, CuO, and GaN components contribute to efficient charge separation and transfer. This study presents a promising strategy for advancing sustainable H2 production via efficient solar-driven water splitting.
Collapse
Affiliation(s)
- Alhoda Abdelmoneim
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - M A K Elfayoumi
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Mohamed Sh Abdel-Wahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - June Key Lee
- Department of Materials Science and Engineering, Chonnam National University Gwangju 61186 Republic of Korea
| | - Wael Z Tawfik
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
3
|
Dong S, Huang Y, Yan H, Tan H, Fan L, Chao M, Ren Y, Guan M, Zhang J, Liu Z, Gao F. Ternary heterostructure-driven photoinduced electron-hole separation enhanced oxidative stress for triple-negative breast cancer therapy. J Nanobiotechnology 2024; 22:240. [PMID: 38735931 PMCID: PMC11089806 DOI: 10.1186/s12951-024-02530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.
Collapse
Affiliation(s)
- Shuqing Dong
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Liying Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jiaxin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Fenglei Gao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
4
|
Qiu Z, Lei Y, Lin X, Zhu J, Zeng R, Sa R, Tang D, Chen Q, Chen Y. A laser-induced zinc oxide/graphene photoelectrode for a photocurrent-polarity-switching photoelectrochemical biosensor with bipedal DNA walker amplification. J Mater Chem B 2024; 12:984-990. [PMID: 38193153 DOI: 10.1039/d3tb02742b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A photocurrent-polarity-switching photoelectrochemical (PEC) biosensor was developed for the ultrasensitive detection of tobramycin (TOB) through bipedal DNA walker amplification with hemin-induced photocurrent-polarity-switching using a laser-induced zinc oxide/graphene (ZnO/LIG) photoelectrode. Specifically, the ZnO/LIG photoelectrode was synthesized in situ by a laser direct writing (LDW) technique. In the presence of TOB, it reacted with HP1 and HP2 and the DNA walker response was activated to form a stable hemin/G-quadruplex. Furthermore, hemin induced a polarity shift in the photocurrent signal. The developed analytical platform exhibited excellent photoelectron transport performance of ZnO/LIG, the signal amplification effect of the DNA walker strategy, and the photocurrent-polarity-switching ability of hemin. Therefore, it demonstrated satisfying photocurrent responses to the target TOB within the working range of 20 nM-1.0 μM at a low detection limit of 5.43 nM. The PEC platform exhibited good stability, reproducibility, sufficient sensitivity and high selectivity for complex experimental samples. Moreover, the photocurrent-polarity-switching PEC biosensor improved the anti-interference ability and avoided false positives or negatives.
Collapse
Affiliation(s)
- Zhenli Qiu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yufen Lei
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xintong Lin
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jinman Zhu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Ruijin Zeng
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rongjian Sa
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiang Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
5
|
Abstract
The photocatalytic activity of silver-based catalysts containing different amounts of molybdenum disulfide (MoS2; 5, 10 and 20 wt.%) was evaluated by the degradation of the antibiotic ciprofloxacin and the production of hydrogen via water splitting. All the silver (Ag)-based catalysts degraded more than 70% of the antibiotic in 60 min. The catalyst that exhibited the best result was 5%Ag@TiO2-P25-5%MoS2, with ca. 91% of degradation. The control experiments and stability tests showed that photocatalysis was the degradation pathway and the selected silver-based catalysts were stable after seven cycles, with less than 2% loss of efficiency per cycle and less than 7% after seven cycles. The catalyst with the highest hydrogen production was 5%Ag@TiO2 NWs-20%MoS2, 1792 μmol/hg, at a wavelength of 400 nm. This amount was ca. 32 times greater than that obtained by the pristine titanium oxide nanowires catalyst. The enhancement was attributed to the high surface area of the catalysts, along with the synergism created by the silver nanoparticles and MoS2. All the catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller (BET) surface area analysis and energy dispersive X-ray spectroscopy (EDS).
Collapse
|
6
|
Photocatalytic Degradation of Fluoroquinolone Antibiotics in Solution by Au@ZnO-rGO-gC3N4 Composites. Catalysts 2022. [DOI: 10.3390/catal12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The photocatalytic degradation of two quinolone-type antibiotics (ciprofloxacin and levofloxacin) in aqueous solution was studied, using catalysts based on ZnO nanoparticles, which were synthesized by a thermal procedure. The efficiency of ZnO was subsequently optimized by incorporating different co-catalysts of gC3N4, reduced graphene oxide, and nanoparticles of gold. The catalysts were fully characterized by electron microscopy (TEM and SEM), XPS, XRD, Raman, and BET surface area. The most efficient catalyst was 10%Au@ZnONPs-3%rGO-3%gC3N4, obtaining degradations of both pollutants above 96%. This catalyst has the largest specific area, and its activity was related to a synergistic effect, involving factors such as the surface of the material and the ability to absorb radiation in the visible region, mainly produced by the incorporation of rGO and gC3N4 in the semiconductor. The use of different scavengers during the catalytic process, was used to establish the possible photodegradation mechanism of both antibiotics.
Collapse
|
7
|
Gebeshuber IC. Biomimetic Nanotechnology Vol. 2. Biomimetics (Basel) 2022; 7:biomimetics7010016. [PMID: 35076489 PMCID: PMC8788524 DOI: 10.3390/biomimetics7010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Biomimetic nanotechnology relates to the most basic aspects of living systems, and the transfer of their properties to human applications [...]
Collapse
Affiliation(s)
- Ille C Gebeshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/134, 1040 Wien, Austria
| |
Collapse
|
8
|
Zayed M, Nasser N, Shaban M, Alshaikh H, Hamdy H, Ahmed AM. Effect of Morphology and Plasmonic on Au/ZnO Films for Efficient Photoelectrochemical Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2338. [PMID: 34578652 PMCID: PMC8471190 DOI: 10.3390/nano11092338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022]
Abstract
To improve photoelectrochemical (PEC) water splitting, various ZnO nanostructures (nanorods (NRs), nanodiscs (NDs), NRs/NDs, and ZnO NRs decorated with gold nanoparticles) have been manufactured. The pure ZnO nanostructures have been synthesized using the successive ionic-layer adsorption and reaction (SILAR) combined with the chemical bath deposition (CBD) process at various deposition times. The structural, chemical composition, nanomorphological, and optical characteristics have been examined by various techniques. The SEM analysis shows that by varying the deposition time of CBD from 2 to 12 h, the morphology of ZnO nanostructures changed from NRs to NDs. All samples exhibit hexagonal phase wurtzite ZnO with polycrystalline nature and preferred orientation alongside (002). The crystallite size along (002) decreased from approximately 79 to 77 nm as deposition time increased from 2 to 12 h. The bandgap of ZnO NRs was tuned from 3.19 to 2.07 eV after optimizing the DC sputtering time of gold to 4 min. Via regulated time-dependent ZnO growth and Au sputtering time, the PEC performance of the nanostructures was optimized. Among the studied ZnO nanostructures, the highest photocurrent density (Jph) was obtained for the 2 h ZnO NRs. As compared with ZnO NRs, the Jph (7.7 mA/cm2) of 4 min Au/ZnO NRs is around 50 times greater. The maximum values of both IPCE and ABPE are 14.2% and 2.05% at 490 nm, which is closed to surface plasmon absorption for Au NPs. There are several essential approaches to improve PEC efficiency by including Au NPs into ZnO NRs, including increasing visible light absorption and minority carrier absorption, boosting photochemical stability, and accelerating electron transport from ZnO NRs to electrolyte carriers.
Collapse
Affiliation(s)
- Mohamed Zayed
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
| | - Nourhan Nasser
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| | - Hind Alshaikh
- Chemistry Department, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi Arabia;
| | - Hany Hamdy
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
| | - Ashour M. Ahmed
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
| |
Collapse
|
9
|
Machín A, Soto-Vázquez L, Colón-Cruz C, Valentín-Cruz CA, Claudio-Serrano GJ, Fontánez K, Resto E, Petrescu FI, Morant C, Márquez F. Photocatalytic Activity of Silver-Based Biomimetics Composites. Biomimetics (Basel) 2021; 6:4. [PMID: 33406738 PMCID: PMC7838927 DOI: 10.3390/biomimetics6010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Different Ag@TiO2 and Ag@ZnO catalysts, with nanowire (NW) structure, were synthesized containing different amounts of silver loading (1, 3, 5, and 10 wt.%) and characterized by FE-SEM, HRTEM, BET, XRD, Raman, XPS, and UV-vis. The photocatalytic activity of the composites was studied by the production of hydrogen via water splitting under UV-vis light and the degradation of the antibiotic ciprofloxacin. The maximum hydrogen production of all the silver-based catalysts was obtained with a silver loading of 10 wt.% under irradiation at 500 nm. Moreover, 10%Ag@TiO2 NWs was the catalyst with the highest activity in the hydrogen production reaction (1119 µmol/hg), being 18 times greater than the amount obtained with the pristine TiO2 NW catalyst. The most dramatic difference in hydrogen production was obtained with 10%Ag@TiO2-P25, 635 µmol/hg, being 36 times greater than the amount reported for the unmodified TiO2-P25 (18 µmol/hg). The enhancement of the catalytic activity is attributed to a synergism between the silver nanoparticles incorporated and the high surface area of the composites. In the case of the degradation of ciprofloxacin, all the silver-based catalysts degraded more than 70% of the antibiotic in 60 min. The catalyst that exhibited the best result was 3%Ag@ZnO commercial, with 99.72% of degradation. The control experiments and stability tests showed that photocatalysis was the route of degradation and the selected silver-based catalysts were stable after seven cycles, with less than 1% loss of efficiency per cycle. These results suggest that the catalysts could be employed in additional cycles without the need to be resynthesized, thus reducing remediation costs.
Collapse
Affiliation(s)
- Abniel Machín
- Arecibo Observatory, Universidad Ana G. Méndez-Cupey Campus, San Juan 00926, Puerto Rico
| | - Loraine Soto-Vázquez
- Materials Characterization Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico; (L.S.-V.); (E.R.)
| | - Carla Colón-Cruz
- Nanomaterials Research Group, School of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo 00778, Puerto Rico; (C.C.-C.); (C.A.V.-C.); (G.J.C.-S.)
| | - Carlos A. Valentín-Cruz
- Nanomaterials Research Group, School of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo 00778, Puerto Rico; (C.C.-C.); (C.A.V.-C.); (G.J.C.-S.)
| | - Gerardo J. Claudio-Serrano
- Nanomaterials Research Group, School of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo 00778, Puerto Rico; (C.C.-C.); (C.A.V.-C.); (G.J.C.-S.)
| | - Kenneth Fontánez
- Department of Chemistry, University of Puerto Rico-Río Piedras, San Juan 00925, Puerto Rico;
| | - Edgard Resto
- Materials Characterization Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico; (L.S.-V.); (E.R.)
| | | | - Carmen Morant
- Department of Applied Physics, Autonomous University of Madrid and Instituto de Ciencia de Materiales Nicolas Cabrera, 28049 Madrid, Spain;
| | - Francisco Márquez
- Nanomaterials Research Group, School of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo 00778, Puerto Rico; (C.C.-C.); (C.A.V.-C.); (G.J.C.-S.)
| |
Collapse
|