1
|
Sivasankar MV, Sreenivasa Rao P. In vitro study of dimethyl glutamate incorporated chitosan/microfibrillated cellulose based matrix in addition of H and Zr on osteoblast cells. Int J Biol Macromol 2024:138889. [PMID: 39701256 DOI: 10.1016/j.ijbiomac.2024.138889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Tissue engineering techniques can be utilized to repair or regenerate damaged tissue by promoting the proliferation and differentiation of cells in bone regeneration. A critical component of this process is the scaffold employed, which should ideally support consistent tissue development during bone regeneration. The aim of this study was to evaluate the morphological, physicochemical, and biological characteristics of various scaffolds: S1 (C/MFC), S2 (C/H/MFC), S3 (C/MFC/Zr), S4 (C/MFC/PCL), S5 (C/H/MFC/PCL), S6 (C/PCL/MFC/Zr), and S7 (C/H/MFC/Zr), which are intended for application in bone regeneration. The scaffolds containing microfibrillated cellulose, chitosan, polycaprolactone, zirconium, and hydroxyapatite were fabricated by the freeze-drying method. Conventional methods, including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis, were used to evaluate morphological and physicochemical properties of composite scaffolds. The fabricated scaffolds (S1-S7) had spongy properties that all functional groups were present in the sponge. Biological properties for cell survival were evaluated by the MTT assay, ALP, and ARS activities, respectively. In physicochemical studies, scaffolds showed tunable water absorption, swelling studies, degradation, sustained drug release, and mechanical properties. In biological studies, the cell proliferation and attachment were shown to significantly increase in scaffolds on MG63 cells. After 7 days of cell culture, ALP and ARS activity indicated the enhancement of extracellular calcium deposition of the MG63 cells on the treated scaffolds. In summary, the scaffolds S7 (C/H/MFC/Zr) treated with dimethyl glutamate revealed favorable effects on bone tissues, implying a potential towards the treatment of bone defects and drug delivery.
Collapse
Affiliation(s)
- M V Sivasankar
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004, India
| | - P Sreenivasa Rao
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004, India.
| |
Collapse
|
2
|
Sebastian K K, Singh AK, Biswas A. Strontium doped 58S bioglass incorporated chitosan/gelatin porous scaffold for bone tissue engineering applications. Int J Biol Macromol 2024; 283:136983. [PMID: 39471925 DOI: 10.1016/j.ijbiomac.2024.136983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Bioglass (Bg) is accepted as a revolutionary material, and doping with strontium (Sr) ions in the Bg network exhibits improved biofunctionality towards bone tissue regeneration and inhibits osteoclast formation. Keeping this in view, the present study focused on the development of chitosan (CS)/gelatin (GE) porous scaffolds incorporated with Sr-doped Bg nanoparticles (nSrBg) for bone tissue engineering applications. The SEM analysis of the fabricated scaffold exhibited that it possessed a homogenous microstructure with an interconnected porous network having pore sizes of 100-300 μm. A swelling of <6-fold and a degradation rate under 50 % were achieved. The compression test revealed that nSrBg improved the strength of the composite to 1.15 MPa. In vitro bioactivity assays suggested the presence of nSrBg enhanced the bone-like deposition of the apatite layer, which possessed cell-supportive properties, allowing the cells to attach and proliferate over the scaffold surface. MTT assay and live-dead staining revealed that the nSrBg enhanced the proliferation of the cells up to 0.48 OD. The ALP assay suggested that the nSrBg addition improved the osteogenic potential until 0.70 OD. Overall, the fabricated scaffold showed superior mechanical and biological properties that can be a promising platform for bone tissue regeneration.
Collapse
Affiliation(s)
- Kiran Sebastian K
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amit Kumar Singh
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India; Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra 411018, India
| | - Amit Biswas
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
3
|
Wang Y, Duan H, Zhang Z, Chen L, Li J. Research Progress on the Application of Natural Medicines in Biomaterial Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5607. [PMID: 39597430 PMCID: PMC11595593 DOI: 10.3390/ma17225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
With the continuous progress of biomedical technology, biomaterial coatings play an important role in improving the performance of medical devices and promoting tissue repair and regeneration. The application of natural medicine to biological materials has become a hot topic due to its diverse biological activity, low toxicity, and wide range of sources. This article introduces the definition and classification of natural medicines, lists some common natural medicines, such as curcumin, allicin, chitosan, tea polyphenols, etc., and lists some biological activities of some common natural medicines, such as antibacterial, antioxidant, antitumor, and other properties. According to the different characteristics of natural medicines, physical adsorption, chemical grafting, layer-by-layer self-assembly, sol-gel and other methods are combined with biomaterials, which can be used for orthopedic implants, cardiovascular and cerebrovascular stents, wound dressings, drug delivery systems, etc., to exert their biological activity. For example, improving antibacterial properties, promoting tissue regeneration, and improving biocompatibility promote the development of medical health. Although the development of biomaterials has been greatly expanded, it still faces some major challenges, such as whether the combination between the coating and the substrate is firm, whether the drug load is released sustainably, whether the dynamic balance will be disrupted, and so on; a series of problems affects the application of natural drugs in biomaterial coatings. In view of these problems, this paper summarizes some suggestions by evaluating the literature, such as optimizing the binding method and release system; carrying out more clinical application research; carrying out multidisciplinary cooperation; broadening the application of natural medicine in biomaterial coatings; and developing safer, more effective and multi-functional natural medicine coatings through continuous research and innovation, so as to contribute to the development of the biomedical field.
Collapse
Affiliation(s)
| | | | | | - Lan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| |
Collapse
|
4
|
Yekani M, Dizaj SM, Sharifi S, Sedaghat H, Saffari M, Memar MY. Nano-scaffold-based delivery systems of antimicrobial agents in the treatment of osteomyelitis ; a narrative review. Heliyon 2024; 10:e38392. [PMID: 39559197 PMCID: PMC11570522 DOI: 10.1016/j.heliyon.2024.e38392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Osteomyelitis caused by drug-resistant pathogens is one of the most important medical challenges due to high rates of mortality and morbidity, and limited therapeutical options. The application of novel nano-scaffolds loaded with antibiotics has widely been studied and extensively evaluated for in vitro and in vivo inhibition of pathogens, regenerating damaged bone tissue, and increasing bone cell proliferation. The treatment of bone infections using the local osteogenic scaffolds loaded with antimicrobial agents may efficiently overcome the problems of the systemic use of antimicrobial agents and provide a controlled release and sufficient local levels of antibiotics in the infected sites. The present study reviewed various nano-scaffolds delivery systems of antimicrobial drugs evaluated to treat osteomyelitis. Nano-scaffolds offer promising approaches because they simulate natural tissue regeneration in terms of their mechanical, structural, and sometimes chemical properties. The potential of several nano-scaffolds prepared by natural polymers such as silk, collagen, gelatin, fibrinogen, chitosan, cellulose, hyaluronic, alginate, and synthetic compounds such as polylactic acid, polyglycolic acid, poly (lactic acid-co-glycolic acid), poly-ɛ-caprolactone have been studied for usage as drug delivery systems of antimicrobial agents to treat osteomyelitis. In addition to incorporated antimicrobial agents and the content of scaffolds, the physical and chemical characteristics of the prepared delivery systems are a determining factor in their effectiveness in treating osteomyelitis.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Sedaghat
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Astaneh ME, Noori F, Fereydouni N. Curcumin-loaded scaffolds in bone regeneration. Heliyon 2024; 10:e32566. [PMID: 38961905 PMCID: PMC11219509 DOI: 10.1016/j.heliyon.2024.e32566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In recent years, there has been a notable surge in the development of engineered bone scaffolds intended for the repair of bone defects. While autografts and allografts have traditionally served as the primary methods in bone tissue engineering, their inherent limitations have spurred the exploration of novel avenues in biomedical implant development. The emergence of bone scaffolds not only facilitates bone reconstruction but also offers a platform for the targeted delivery of therapeutic agents. There exists a pervasive interest in leveraging various drugs, proteins, growth factors, and biomolecules with osteogenic properties to augment bone formation, as the enduring side effects associated with current clinical modalities necessitate the pursuit of safer alternatives. Curcumin, the principal bioactive compound found in turmeric, has demonstrated notable efficacy in regulating the proliferation and differentiation of bone cells while promoting bone formation. Nevertheless, its utility is hindered by restricted water solubility and poor bioavailability. Strategies aimed at enhancing the solubility, stability, and bioavailability of curcumin, including formulation techniques such as liposomes and nanoparticles or its complexation with metals, have been explored. This investigation is dedicated to exploring the impact of curcumin on the proliferation, differentiation, and migration of osteocytes, osteoblasts, and osteoclasts.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Piskláková L, Skuhrovcová K, Bártová T, Seidelmannová J, Vondrovic Š, Velebný V. Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers (Basel) 2024; 16:664. [PMID: 38475347 DOI: 10.3390/polym16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Nanofibrous materials represent a very promising form of advanced carrier systems that can be used industrially, especially in regenerative medicine as highly functional bandages, or advanced wound dressings. By incorporation of antimicrobial additives directly into the structure of the nanofiber carrier, the functionality of the layer is upgraded, depending on the final requirement-bactericidal, bacteriostatic, antiseptic, or a generally antimicrobial effect. Such highly functional nanofibrous layers can be prepared mostly by electrospinning technology from both synthetic and natural polymers. The presence of a natural polymer in the composition is very advantageous. Especially in medical applications where, due to the presence of the material close to the human body, the healing process is more efficient and without the occurrence of an unwanted inflammatory response. However, converting natural polymers into nanofibrous form, with a homogeneously distributed and stable additive, is a great challenge. Thus, a combination of natural and synthetic materials is often used. This review clearly summarizes the issue of the incorporation and effectiveness of different types of antimicrobial substances, such as nanoparticles, antibiotics, common antiseptics, or substances of natural origin, into electrospun nanofibrous layers made of mostly natural polymer materials. A section describing the problematic aspects of antimicrobial polymers is also included.
Collapse
Affiliation(s)
- Lenka Piskláková
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kristýna Skuhrovcová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Tereza Bártová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Štěpán Vondrovic
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
7
|
Dizaj SM, Rezaei Y, Namaki F, Sharifi S, Abdolahinia ED. Effect of Curcumin-containing Nanofibrous Gelatin-hydroxyapatite Scaffold on Proliferation and Early Osteogenic Differentiation of Dental Pulp Stem Cells. Pharm Nanotechnol 2024; 12:262-268. [PMID: 37592779 DOI: 10.2174/2211738511666230817102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/11/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND In recent years, the electrospinning method has received attention because of its usage in producing a mimetic nanocomposite scaffold for tissue regeneration. Hydroxyapatite and gelatin are suitable materials for producing scaffolds, and curcumin has the osteogenesis induction effect. AIMS This study aimed to evaluate the toxicity and early osteogenic differentiation stimulation of nanofibrous gelatin-hydroxyapatite scaffold containing curcumin on dental pulp stem cells (DPSCs). OBJECTIVE The objective of the present investigation was the evaluation of the proliferative effect and primary osteogenic stimulation of DPSCs with a nanofibrous gelatin-hydroxyapatite scaffold containing curcumin. Hydroxyapatite and gelatin were used as suitable and biocompatible materials to make a scaffold suitable for stimulating osteogenesis. Curcumin was added to the scaffold as an osteogenic differentiation- enhancing agent. METHODS The effect of nano-scaffold on the proliferation of DPSCs was evaluated. The activity of alkaline phosphatase (ALP) as the early osteogenic marker was considered to assess primary osteogenesis stimulation in DPSCs. RESULTS The nanofibrous gelatin-hydroxyapatite scaffold containing curcumin significantly increased the proliferation and the ALP activity of DPSCs (P<0.05). The proliferative effect was insignificant in the first 2 days, but the scaffold increased cell proliferation by more than 40% in the fourth and sixth days. The prepared scaffold increased the activity of the ALP of DPSCs by 60% compared with the control after 14 days (p<0.05). CONCLUSION The produced nanofibrous gelatin-hydroxyapatite scaffold containing curcumin can be utilized as a potential candidate in tissue engineering and regeneration of bone and tooth. FUTURE PROSPECTS The prepared scaffold in the present study could be a beneficial biomaterial for tissue engineering and the regeneration of bone and tooth soon.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashar Rezaei
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Namaki
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Roldán E, Reeves ND, Cooper G, Andrews K. Can we achieve biomimetic electrospun scaffolds with gelatin alone? Front Bioeng Biotechnol 2023; 11:1160760. [PMID: 37502104 PMCID: PMC10368888 DOI: 10.3389/fbioe.2023.1160760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Gelatin is a natural polymer commonly used in biomedical applications in combination with other materials due to its high biocompatibility, biodegradability, and similarity to collagen, principal protein of the extracellular matrix (ECM). The aim of this study was to evaluate the suitability of gelatin as the sole material to manufacture tissue engineering scaffolds by electrospinning. Methods: Gelatin was electrospun in nine different concentrations onto a rotating collector and the resulting scaffold's mechanical properties, morphology and topography were assessed using mechanical testing, scanning electron microscopy and white light interferometry, respectively. After characterizing the scaffolds, the effects of the concentration of the solvents and crosslinking agent were statistically evaluated with multivariate analysis of variance and linear regressions. Results: Fiber diameter and inter-fiber separation increased significantly when the concentration of the solvents, acetic acid (HAc) and dimethyl sulfoxide (DMSO), increased. The roughness of the scaffolds decreased as the concentration of dimethyl sulfoxide increased. The mechanical properties were significantly affected by the DMSO concentration. Immersed crosslinked scaffolds did not degrade until day 28. The manufactured gelatin-based electrospun scaffolds presented comparable mechanical properties to many human tissues such as trabecular bone, gingiva, nasal periosteum, oesophagus and liver tissue. Discussion: This study revealed for the first time that biomimetic electrospun scaffolds with gelatin alone can be produced for a significant number of human tissues by appropriately setting up the levels of factors and their interactions. These findings also extend statistical relationships to a form that would be an excellent starting point for future research that could optimize factors and interactions using both traditional statistics and machine learning techniques to further develop specific human tissue.
Collapse
Affiliation(s)
- Elisa Roldán
- Department of Engineering, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Neil D. Reeves
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Glen Cooper
- School of Engineering, University of Manchester, Manchester, United Kingdom
| | - Kirstie Andrews
- Department of Engineering, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
9
|
Mahmoudi A, Ghavimi MA, Maleki Dizaj S, Sharifi S, Sajjadi SS, Jamei Khosroshahi AR. Efficacy of a New Hemostatic Dental Sponge in Controlling Bleeding, Pain, and Dry Socket Following Mandibular Posterior Teeth Extraction-A Split-Mouth Randomized Double-Blind Clinical Trial. J Clin Med 2023; 12:4578. [PMID: 37510692 PMCID: PMC10380399 DOI: 10.3390/jcm12144578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
AIMS This study aimed to clinically evaluate of a novel gelatin-based biodegradable sponge after mandibular posterior teeth extraction to assess its abilities in controlling bleeding, pain, and dry socket compared a commercial sponge. TRIAL DESIGN In this study, 26 patients who needed the extraction of two mandibular molar teeth were selected and, in each patient, after tooth extraction, the prepared gelatin sponge was used in the test group and the commercial sponge was used in the control group in the form of a randomized, double-blind, split-mouth clinical trial. The sterile gauzes were used on top of each sponge to absorb the extra blood (unabsorbed blood of sponges) to assess the blood absorption amount. Also, the amount of bleeding was recorded for 1 and 4 h after extraction for two groups. The amount of pain was measured for 12, 24, and 48 h after tooth extraction by Visual Analogue Scale (VAS). All patients also returned for examination four days after extraction to assess the occurrence of dry socket. RESULTS The results showed that the average weight of absorbed blood by sterile gauze in the control group (6.32 ± 1.06 g) was higher than in test group (3.97 ± 1.1 g), e.g., the bleeding control was better for the test group (p < 0.05). Bleeding was observed to be significantly reduced in the test group within 1 h (p = 0.003), within 1-4 h (p = 0.002), and after 4 h (p = 0.042) post-operatively in comparison to the control group. The average pain decreased significantly over time in both groups and the reduction of the pain was significantly higher for the test group (p < 0.05). Just one dry socket case occurred in the control group. CONCLUSION The prepared sponge is recommended for use in dental surgeries because of its abilities in bleeding, pain, and dry socket control.
Collapse
Affiliation(s)
- Armin Mahmoudi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Seyyede Shabnam Sajjadi
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Amir Reza Jamei Khosroshahi
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| |
Collapse
|
10
|
Maleki Dizaj S, Torab A, Kouhkani S, Sharifi S, Negahdari R, Bohlouli S, Fattahi S, Salatin S. Gelatin-Curcumin Nanocomposites as a Coating for Implant Healing Abutment: In Vitro Stability Investigation. Clin Pract 2023; 13:88-101. [PMID: 36648849 PMCID: PMC9844414 DOI: 10.3390/clinpract13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Regarding the importance of preventing peri-implantitis in dental implants, the current study aimed to coat a healing abutment with gelatin−curcumin nanocomposites, and the stability of this coating on the healing abutment was evaluated. A cell viability measuring test was used to determine the cytotoxicity of nanocomposites against dental pulp stem cells. To show the pattern of curcumin release from nanocomposites, drug dissolution apparatus two was applied. Then, 16 healing abutments were examined in vitro. Titanium healing abutments were coated with the gelatin−curcumin nanocomposite. The dip coating method was applied for coating and the consistency of coated cases was evaluated at intervals of one, 30, and 60 days after coating inside the simulated body fluid (SBF) solution. A scanning electron microscope (SEM) was used for investigating the microstructure and morphology of coatings, and an energy dispersive X-ray (EDX) was applied for determining the combination of the coating. Moreover, the healings were weighed before and after coating via an accurate digital scale with an accuracy of 0.0001. Finally, the data were analyzed using SPSS software. The prepared nanocomposite was non-cytotoxic against tested cells. The nanocomposite showed a relatively rapid release pattern in the first 10 days for curcumin. The release of curcumin from the nanoparticles continued slowly until the 30th day. The weight changes were statistically significant (p-value < 0.001) during this time. Based on the post hoc test, the weight between two times immediately after coating and 30 days after coating, and also one day after coating and 30 days after coating, was statistically insignificant. The results revealed that the coating of the gelatin−curcumin nanocomposite on the healing was successful and this consistency was kept for at least one month. It is necessary to investigate more evaluations in different fields of physicochemical, mechanical, and antimicrobial aspects for coated healing abutments.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Shadi Kouhkani
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51368, Iran
- Correspondence:
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Shirin Fattahi
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| |
Collapse
|
11
|
López de Dicastillo C, Velásquez E, Rojas A, Garrido L, Moreno MC, Guarda A, Galotto MJ. Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation. Polymers (Basel) 2023; 15:polym15020361. [PMID: 36679242 PMCID: PMC9866801 DOI: 10.3390/polym15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023] Open
Abstract
Betalains are bioactive compounds with remarkable functional and nutritional activities for health and food preservation and attractiveness. Nevertheless, they are highly sensitive to external factors, such as oxygen presence, light, and high temperatures. Therefore, the search for new structures, polymeric matrices, and efficient methods of encapsulation of these compounds is of great interest to increase their addition to food products. In this work, betalains were extracted from red beetroot. Betacyanin and betaxanthin contents were quantified. Subsequently, these compounds were successfully encapsulated into the core of coaxial electrosprayed capsules composed of hydroxypropyl methylcellulose (HPMC) and gelatin (G). The effect of incorporating the carbohydrate and the protein both in the core or shell structures was studied to elucidate the best composition for betalain protection. Morphological, optical, and structural properties were analyzed to understand the effect of the incorporation of the bioactive compounds in the morphology, color, and chemical interactions between components of resulting electrosprayed capsules. The results of the thermogravimetric and encapsulation efficiency analysis coincided that the incorporation of beetroot extract in G in the core and HPMC in the shell resulted in the structure with greater betalain protection. The effectiveness of the core/shell structure was confirmed for future food applications.
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - Luan Garrido
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - María Carolina Moreno
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Macul 6904411, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
- Correspondence:
| |
Collapse
|
12
|
Shahi S, Sharifi S, Khalilov R, Dizaj SM, Abdolahinia ED. Gelatin-hydroxyapatite Fibrous Nanocomposite for Regenerative Dentistry and bone Tissue Engineering. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims:
This study aimed to prepare and physicochemically evaluate as well as assess the cytotoxicity and stimulation of early osteogenic differentiation of dental pulp stem cells of gelatin-hydroxyapatite (Gel-HA) fibrous nanocomposite scaffold.
Background:
Recently, the electrospinning approach in nanotechnology has been considered due to its application in the preparation of biomimetic nanofibers for tissue engineering.
Objective:
The main objective of this study was to evaluate Gel-HA fibrous nanocomposite for regenerative dentistry and bone tissue engineering material.
Methods:
The nano-scaffold was prepared via the electrospinning method. Then, the physicochemical properties (particle size, surface charge, morphology, hydrophilicity, specific surface area, crystalline state and the characterization of functional groups) and the proliferative effects of nano-scaffolds on dental pulp stem cells were assessed. The alkaline phosphatase activity was assessed for evaluation of early osteogenic differentiation of dental pulp stem cells.
Results:
The prepared nano-scaffolds had a negative surface charge (-30 mv±1.3), mono-dispersed nano-scale diameter (98 nm±1.2), crystalline state and fibrous uniform morphology without any bead (structural defects). The nanofibrous scaffold showed increased hydrophobicity compared to gelatin nanofibers. Based on Brunauer-Emmett-Teller analysis, the specific surface area, pore volume and pore diameter of Gel-HA nanofibers decreased compared to gelatin nanofibers. The Gel-HA nano-fibers showed the proliferative effect and increased the alkaline phosphatase activity of cells significantly (P<0.05).
Conclusion:
The prepared Gel-HA nanofibers can be considered potential candidates for application in bone tissue engineering and regenerative dentistry.
Other:
Gel-HA nanofibers could be a potential material for bone regeneration and regenerative dentistry in the near future.
Collapse
|
13
|
Maleki Dizaj S, Sharifi S, Tavakoli F, Hussain Y, Forouhandeh H, Hosseiniyan Khatibi SM, Memar MY, Yekani M, Khan H, Goh KW, Ming LC. Curcumin-Loaded Silica Nanoparticles: Applications in Infectious Disease and Food Industry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162848. [PMID: 36014710 PMCID: PMC9414236 DOI: 10.3390/nano12162848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 05/12/2023]
Abstract
Curcumin has multiple properties that are used to cure different diseases such as cancer, infections, inflammatory, arthritic disease, etc. Despite having many effects, the inherent physicochemical properties-such as poor water solubility, chemical instability, low bioavailability, photodegradation, fast metabolism, and short half-life-of curcumin's derivatives have limited its medical importance. Recently, unprecedented advances in biomedical nanotechnology have led to the development of nanomaterial-based drug delivery systems in the treatment of diseases and diagnostic goals that simultaneously enhance therapeutic outcomes and avoid side effects. Mesoporous silica nanoparticles (MSNs) are promising drug delivery systems for more effective and safer treatment of several diseases, such as infections, cancers, and osteoporosis. Achieving a high drug loading in MSNs is critical to the success of this type of treatment. Their notable inherent properties-such as adjustable size and porosity, high pore volume, large surface area, functionality of versatile surfaces, as well as biocompatibility-have prompted extraordinary research on MSNs as multi-purpose delivery platforms. In this review, we focused on curcumin-loaded silica nanoparticles and their effects on the diagnosis and treatment of infections as well as their use in food packaging.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
- Correspondence: (S.S.); (H.K.)
| | - Fatemeh Tavakoli
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | | | - Mohammad Yousef Memar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Mina Yekani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 8715988141, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan 8715988141, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
- Correspondence: (S.S.); (H.K.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 78100, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan BE 1410, Brunei
| |
Collapse
|
14
|
Nanomaterials in Dentistry: Current Applications and Future Scope. NANOMATERIALS 2022; 12:nano12101676. [PMID: 35630898 PMCID: PMC9144694 DOI: 10.3390/nano12101676] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Nanotechnology utilizes the mechanics to control the size and morphology of the particles in the required nano range for accomplishing the intended purposes. There was a time when it was predominantly applied only to the fields of matter physics or chemical engineering, but with time, biological scientists recognized its vast benefits and explored the advantages in their respective fields. This extension of nanotechnology in the field of dentistry is termed ‘Nanodentistry.’ It is revolutionizing every aspect of dentistry. It consists of therapeutic and diagnostic tools and supportive aids to maintain oral hygiene with the help of nanomaterials. Research in nanodentistry is evolving holistically but slowly with the advanced finding of symbiotic use of novel polymers, natural polymers, metals, minerals, and drugs. These materials, in association with nanotechnology, further assist in exploring the usage of nano dental adducts in prosthodontic, regeneration, orthodontic, etc. Moreover, drug release cargo abilities of the nano dental adduct provide an extra edge to dentistry over their conventional counterparts. Nano dentistry has expanded to every single branch of dentistry. In the present review, we will present a holistic view of the recent advances in the field of nanodentistry. The later part of the review compiled the ethical and regulatory challenges in the commercialization of the nanodentistry. This review tracks the advancement in nano dentistry in different but important domains of dentistry.
Collapse
|
15
|
Montes A, Valor D, Delgado L, Pereyra C, Martínez de la Ossa E. An Attempt to Optimize Supercritical CO 2 Polyaniline-Polycaprolactone Foaming Processes to Produce Tissue Engineering Scaffolds. Polymers (Basel) 2022; 14:488. [PMID: 35160477 PMCID: PMC8838718 DOI: 10.3390/polym14030488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Conjugated polymers are biomaterials with high conductivity characteristics because of their molecular composition. However, they are too rigid and brittle for medical applications and therefore need to be combined with non-conductive polymers to overcome or lessen these drawbacks. This work has, consequently, focused on the development of three-dimensional scaffolds where conductive and non-conductive polymers have been produced by combining polycaprolactone (PCL) and polyaniline (PANI) by means of supercritical CO2 foaming techniques. To evaluate their therapeutic potential as implants, a series of experiments have been designed to determine the most influential variables in the production of the three-dimensional scaffolds, including temperature, pressure, polymer ratio and depressurization rate. Internal morphology, porosity, expansion factor, PANI loads, biodegradability, mechanical and electrical properties have been taken as the response variables. The results revealed a strong influence from all the input variables studied, as well as from their interactions. The best operating conditions tested were 70 °C, 100 bar, a ratio of 5:1 (PCL:PANI), a depressurization rate of 20 bar/min and a contact time of 1 h.
Collapse
Affiliation(s)
- Antonio Montes
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cadiz, International Excellence Agrifood Campus (CeiA3), Campus Universitario Río San Pedro, 11510 Puerto Real, Cadiz, Spain; (D.V.); (L.D.); (C.P.); (E.M.d.l.O.)
| | | | | | | | | |
Collapse
|