1
|
Metal-Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics 2023; 15:pharmaceutics15010274. [PMID: 36678903 PMCID: PMC9861052 DOI: 10.3390/pharmaceutics15010274] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing global crisis with an increasing number of untreatable or exceedingly difficult-to-treat bacterial infections, due to their growing resistance to existing drugs. It is predicted that AMR will be the leading cause of death by 2050. In addition to ongoing efforts on preventive strategies and infection control, there is ongoing research towards the development of novel vaccines, antimicrobial agents, and optimised diagnostic practices to address AMR. However, developing new therapeutic agents and medicines can be a lengthy process. Therefore, there is a parallel ongoing worldwide effort to develop materials for optimised drug delivery to improve efficacy and minimise AMR. Examples of such materials include functionalisation of surfaces so that they can become self-disinfecting or non-fouling, and the development of nanoparticles with promising antimicrobial properties attributed to their ability to damage numerous essential components of pathogens. A relatively new class of materials, metal-organic frameworks (MOFs), is also being investigated for their ability to act as carriers of antimicrobial agents, because of their ultrahigh porosity and modular structures, which can be engineered to control the delivery mechanism of loaded drugs. Biodegradable polymers have also been found to show promising applications as antimicrobial carriers; and, recently, several studies have been reported on delivery of antimicrobial drugs using composites of MOF and biodegradable polymers. This review article reflects on MOFs and polymer-MOF composites, as carriers and delivery agents of antimicrobial drugs, that have been studied recently, and provides an overview of the state of the art in this highly topical area of research.
Collapse
|
2
|
Yi S, Zhou Y, Zhang J, Wang M, Zheng S, Yang X, Duan L, Reis RL, Dai F, Kundu SC, Xiao B. Flat Silk Cocoon-Based Dressing: Daylight-Driven Rechargeable Antibacterial Membranes Accelerate Infected Wound Healing. Adv Healthc Mater 2022; 11:e2201397. [PMID: 35996858 DOI: 10.1002/adhm.202201397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/17/2022] [Indexed: 01/28/2023]
Abstract
One of the leading causes of death globally, especially in underdeveloped countries, is bacterial infection. Recently, the prevalence of infections from antibiotic-resistant bacteria has been increasing, which makes the need for innovative antibacterial wound dressings urgent. It is reported that g-C3 N4 -based flat silk cocoons (FSCs) with rechargeable antibacterial activity can efficiently generate reactive oxygen species (ROS) under daylight irradiation. The photoactive FSCs store the ROS and then release them in the dark. The engineered FSCs exhibit integrated properties of good biocompatibility, strong mechanical characteristics, robust photoactivity with photostorability, and excellent bactericidal efficiency (99.9% contact killing). In a rat model of infected wounds, the photoactive FSCs induce faster healing and reduce bacterial infections. The successful application of these FSC materials as wound dressings may provide a versatile platform for exploring the use of green photoactive antibacterial materials for accelerated wound healing and prevention of infections.
Collapse
Affiliation(s)
- Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Ying Zhou
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Jiamei Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Min Wang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Shaohui Zheng
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, P. R. China
| |
Collapse
|