1
|
Mousavi SM, Hashemi SA, Ghahramani Y, Azhdari R, Yousefi K, Gholami A, Fallahi Nezhad F, Vijayakameswara Rao N, Omidifar N, Chiang WH. Antiproliferative and Apoptotic Effects of Graphene Oxide @AlFu MOF Based Saponin Natural Product on OSCC Line. Pharmaceuticals (Basel) 2022; 15:ph15091137. [PMID: 36145358 PMCID: PMC9504826 DOI: 10.3390/ph15091137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
The increasing rate of oral squamous cell carcinoma (OSCC) and the undesirable side effects of anticancer agents have enhanced the demand for the development of efficient, detectable, and targeted anticancer systems. Saponins are a diverse family of natural glycosides that have recently been evaluated as an effective compound for the targeted therapy of squamous cell carcinoma. Due to their porous nature and stable structure, metal–organic frameworks (MOFs) are a well-known substance form for various biological applications, such as drug delivery. In this study, we fabricated a novel hybrid, highly porous and low-toxic saponin-loaded nanostructure by modifying graphene oxide (GO)/reduced GO (rGO) with aluminum fumarate (AlFu) as MOF core–shell nanocomposite. The characterization of the nanostructures was investigated by FTIR, TEM, EDX, FESEM, and BET. MTT assay was used to investigate the anticancer activity of these compounds on OSCC and PDL normal dental cells. The effect of the nanocomposites on OSCC was then investigated by studying apoptosis and necrosis using flow cytometry. The GO/rGO was decorated with a saponin–AlFu mixture to further investigate cytotoxicity. The results of the MTT assay showed that PDL cells treated with AlFu–GO–saponin at a concentration of 250 μg/mL had a viability of 74.46 ± 16.02%, while OSCC cells treated with this sample at a similar concentration had a viability of only 38.35 ± 19.9%. The anticancer effect of this nanostructure on OSCC was clearly demonstrated. Moreover, the number of apoptotic cells in the AlFu–GO–saponin and AlFu–rGO–saponin groups was 10.98 ± 2.36%–26.90 ± 3.24% and 15.9 ± 4.08%–29.88 ± 0.41%, respectively, compared with 2.52 ± 0.78%–1.31 ± 0.62% in the untreated group. This significant increase in apoptotic effect observed with AlFu–rGO–saponin was also reflected in the significant anticancer effect of saponin-loaded nanostructures. Therefore, this study suggests that an effective saponin delivery system protocol for the precise design and fabrication of anticancer nanostructures for OSCC therapy should be performed prior to in vivo evaluations.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Yasmin Ghahramani
- Department of Endodontics, Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Khadijeh Yousefi
- Department of Dental Materials and Biomaterials Research Centre, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Fatemeh Fallahi Nezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| |
Collapse
|
2
|
Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics (Basel) 2022; 11:antibiotics11040469. [PMID: 35453220 PMCID: PMC9031819 DOI: 10.3390/antibiotics11040469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Despite culturing the fastest-growing animal in animal husbandry, fish farmers are often adversely economically affected by pathogenic disease outbreaks across the world. Although there are available solutions such as the application of antibiotics to mitigate this phenomenon, the excessive and injudicious use of antibiotics has brought with it major concerns to the community at large, mainly due to the rapid development of resistant bacteria. At present, the use of natural compounds such as phytocompounds that can be an alternative to antibiotics is being explored to address the issue of antimicrobial resistance (AMR). These phytocompounds are bioactive agents that can be found in many species of plants and hold much potential. In this review, we will discuss phytocompounds extracted from plants that have been evidenced to contain antimicrobial, antifungal, antiviral and antiparasitic activities. Further, it has also been found that compounds such as terpenes, phenolics, saponins and alkaloids can be beneficial to the aquaculture industry when applied. This review will focus mainly on compounds that have been identified between 2000 and 2021. It is hoped this review will shed light on promising phytocompounds that can potentially and effectively mitigate AMR.
Collapse
|
3
|
Jurek I, Szuplewska A, Chudy M, Wojciechowski K. Soapwort ( Saponaria officinalis L.) Extract vs. Synthetic Surfactants-Effect on Skin-Mimetic Models. Molecules 2021; 26:molecules26185628. [PMID: 34577098 PMCID: PMC8467643 DOI: 10.3390/molecules26185628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Our skin is continuously exposed to different amphiphilic substances capable of interaction with its lipids and proteins. We describe the effect of a saponin-rich soapwort extract and of four commonly employed synthetic surfactants: sodium lauryl sulfate (SLS), sodium laureth sulfate (SLES), ammonium lauryl sulfate (ALS), cocamidopropyl betaine (CAPB) on different human skin models. Two human skin cell lines were employed: normal keratinocytes (HaCaT) and human melanoma cells (A375). The liposomes consisting of a dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3, mimicking the cell membrane of keratinocytes and melanoma cells were employed as the second model. Using dynamic light scattering (DLS), the particle size distribution of liposomes was analyzed before and after contact with the tested (bio)surfactants. The results, supplemented by the protein solubilization tests (albumin denaturation test, zein test) and oil emulsification capacity (using olive oil and engine oil), showed that the soapwort extract affects the skin models to a clearly different extent than any of the tested synthetic surfactants. Its protein and lipid solubilizing potential are much smaller than for the three anionic surfactants (SLS, ALS, SLES). In terms of protein solubilization potential, the soapwort extract is comparable to CAPB, which, however, is much harsher to lipids.
Collapse
Affiliation(s)
- Ilona Jurek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (I.J.); (A.S.); (M.C.)
| | - Aleksandra Szuplewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (I.J.); (A.S.); (M.C.)
| | - Michał Chudy
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (I.J.); (A.S.); (M.C.)
| | - Kamil Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (I.J.); (A.S.); (M.C.)
- SaponLabs Ltd., Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence:
| |
Collapse
|