1
|
Zhao X, Zhai L, Chen J, Zhou Y, Gao J, Xu W, Li X, Liu K, Zhong T, Xiao Y, Yu X. Recent Advances in Microfluidics for the Early Detection of Plant Diseases in Vegetables, Fruits, and Grains Caused by Bacteria, Fungi, and Viruses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15401-15415. [PMID: 38875493 PMCID: PMC11261635 DOI: 10.1021/acs.jafc.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
In the context of global population growth expected in the future, enhancing the agri-food yield is crucial. Plant diseases significantly impact crop production and food security. Modern microfluidics offers a compact and convenient approach for detecting these defects. Although this field is still in its infancy and few comprehensive reviews have explored this topic, practical research has great potential. This paper reviews the principles, materials, and applications of microfluidic technology for detecting plant diseases caused by various pathogens. Its performance in realizing the separation, enrichment, and detection of different pathogens is discussed in depth to shed light on its prospects. With its versatile design, microfluidics has been developed for rapid, sensitive, and low-cost monitoring of plant diseases. Incorporating modules for separation, preconcentration, amplification, and detection enables the early detection of trace amounts of pathogens, enhancing crop security. Coupling with imaging systems, smart and digital devices are increasingly being reported as advanced solutions.
Collapse
Affiliation(s)
- Xiaohan Zhao
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, People’s
Republic of China
| | - Lingzi Zhai
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
- Department
of Food Science & Technology, National
University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Jingwen Chen
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
- Wageningen
University & Research, Wageningen 6708 WG, The Netherlands
| | - Yongzhi Zhou
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
| | - Jiuhe Gao
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
| | - Wenxiao Xu
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
| | - Xiaowei Li
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
| | - Kaixu Liu
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
| | - Tian Zhong
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
| | - Ying Xiao
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, People’s
Republic of China
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
| | - Xi Yu
- Faculty
of Medicine, Macau University of Science
and Technology, Avenida
Wai Long, Taipa, Macau 999078, People’s
Republic of China
| |
Collapse
|
2
|
Hameed A, Zeeshan M, Binyamin R, Alam MW, Ali S, Zaheer MS, Ali H, Riaz MW, Ali HH, Elshikh MS, Alarjani KM. Molecular characterization of Pectobacterium atrosepticum infecting potato and its management through chemicals. PeerJ 2024; 12:e17518. [PMID: 38952990 PMCID: PMC11216208 DOI: 10.7717/peerj.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Potato farming is a vital component of food security and the economic stability especially in the under developing countries but it faces many challenges in production, blackleg disease caused by Pectobacterium atrosepticum (Pa) is one of the main reason for damaging crop yield of the potato. Effective management strategies are essential to control these losses and to get sustainable potato crop yield. This study was focused on characterizing the Pa and the investigating new chemical options for its management. The research was involved a systematic survey across the three district of Punjab, Pakistan (Khanewal, Okara, and Multan) to collect samples exhibiting the black leg symptoms. These samples were analyzed in the laboratory where gram-negative bacteria were isolated and identified through biochemical and pathogenicity tests for Pa. DNA sequencing further confirmed these isolates of Pa strains. Six different chemicals were tested to control blackleg problem in both vitro and vivo at different concentrations. In vitro experiment, Cordate demonstrated the highest efficacy with a maximum inhibition zones of 17.139 mm, followed by Air One (13.778 mm), Profiler (10.167 mm), Blue Copper (7.7778 mm), Spot Fix (7.6689 mm), and Strider (7.0667 mm). In vivo, Cordate maintained its effectiveness with the lowest disease incidence of 14.76%, followed by Blue Copper (17.49%), Air One (16.98%), Spot Fix (20.67%), Profiler (21.45%), Strider (24.99%), and the control group (43.00%). The results highlight Cordate's potential as a most effective chemical against Pa, offering promising role for managing blackleg disease in potato and to improve overall productivity.
Collapse
Affiliation(s)
- Akhtar Hameed
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Muhammad Zeeshan
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Rana Binyamin
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | | | - Subhan Ali
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Waheed Riaz
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hafiz Haider Ali
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
- Department of Agriculture, Government College University Lahore, Lahore, Pakistan
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
4
|
Attaluri S, Dharavath R. Novel plant disease detection techniques-a brief review. Mol Biol Rep 2023; 50:9677-9690. [PMID: 37823933 DOI: 10.1007/s11033-023-08838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant pathogens cause severe losses to agricultural yield worldwide. Tracking plant health and early disease detection is important to reduce the disease spread and thus economic loss. Though visual scouting has been practiced from former times, detection of asymptomatic disease conditions is difficult. So, DNA-based and serological methods gained importance in plant disease detection. The progress in advanced technologies challenges the development of rapid, non-invasive, and on-field detection techniques such as spectroscopy. This review highlights various direct and indirect ways of detecting plant diseases like Enzyme-linked immunosorbent assay, Lateral flow assays, Polymerase chain reaction, spectroscopic techniques and biosensors. Although these techniques are sensitive and pathogen-specific, they are more laborious and time-intensive. As a consequence, a lot of interest is gained in in-field adaptable point-of-care devices with artificial intelligence-assisted pathogen detection at an early stage. More recently computer-aided techniques like neural networks are gaining significance in plant disease detection by image processing. In addition, a concise report on the latest progress achieved in plant disease detection techniques is provided.
Collapse
|
5
|
Investigating the loss of major yolk proteins during the processing of sea cucumber (Apostichopus japonicus) using an MRM-based targeted proteomics strategy. Food Chem 2023; 404:134670. [DOI: 10.1016/j.foodchem.2022.134670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
6
|
Suárez MB, Diego M, Feria FJ, Martín-Robles MJ, Moreno S, Palomo JL. New PCR-Based Assay for the Identification of Pectobacterium carotovorum Causing Potato Soft Rot. PLANT DISEASE 2022; 106:676-684. [PMID: 34569833 DOI: 10.1094/pdis-08-21-1676-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soft rot on potato tuber is a destructive disease caused by pathogenic bacterial species of the genera Pectobacterium and Dickeya. Accurate identification of the causal agent is necessary to ensure adequate disease management because different species may have distinct levels of aggressiveness and host range. One of the most important potato pathogens is Pectobacterium carotovorum, a highly heterogeneous species capable of infecting multiple hosts. The complexity of this species, until recently divided into several subspecies, has made it difficult to develop precise diagnostic tests. This study proposes a PCR assay based on the new pair of primers Pcar1F/R to facilitate the identification of potato isolates of P. carotovorum according to the most recent taxonomic description of this species. The new primers were designed on a variable segment of the 16S rRNA gene and the intergenic spacer region of available DNA sequences from classical and recently established species in the genus Pectobacterium. The results of the PCR analysis of genomic DNA from 32 Pectobacterium and Dickeya strains confirmed that the Pcar1F/R primers have sufficient nucleotide differences to discriminate between P. carotovorum and other Pectobacterium species associated with damage to potato crops, with the exception of Pectobacterium versatile, which improves the specificity of the currently available primers. The proposed assay was originally developed as a conventional PCR but was later adapted to the real-time PCR format for application in combination with the existing real-time PCR test for the potato-specific pathogen Pectobacterium parmentieri. This should be useful for the routine diagnosis of potato soft rot.
Collapse
Affiliation(s)
- M Belén Suárez
- Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de, Salamanca, 37007 Salamanca, Spain
| | - Marta Diego
- Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
- Centro Regional de Diagnóstico (CRD), Junta de Castilla y León, 37340 Aldearrubia, Spain
| | - Francisco J Feria
- Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
- Centro Regional de Diagnóstico (CRD), Junta de Castilla y León, 37340 Aldearrubia, Spain
| | - Manuel J Martín-Robles
- Centro Regional de Diagnóstico (CRD), Junta de Castilla y León, 37340 Aldearrubia, Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | - Jose Luis Palomo
- Centro Regional de Diagnóstico (CRD), Junta de Castilla y León, 37340 Aldearrubia, Spain
| |
Collapse
|
7
|
Mohammad-Razdari A, Rousseau D, Bakhshipour A, Taylor S, Poveda J, Kiani H. Recent advances in E-monitoring of plant diseases. Biosens Bioelectron 2022; 201:113953. [PMID: 34998118 DOI: 10.1016/j.bios.2021.113953] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 02/09/2023]
Abstract
Infectious plant diseases are caused by pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, phytoplasma, and nematodes. Plant diseases have a significant effect on the plant quality and yield and they can destroy the entire plant if they are not controlled in time. To minimize disease-related losses, it is essential to identify and control pathogens in the early stages. Plant disease control is thus a fundamental challenge both for global food security and sustainable agriculture. Conventional methods for plant diseases control have given place to electronic control (E-monitoring) due to their lack of portability, being time consuming, need for a specialized user, etc. E-monitoring using electronic nose (e-nose), biosensors, wearable sensors, and 'electronic eyes' has attracted increasing attention in recent years. Detection, identification, and quantification of pathogens based on electronic sensors (E-sensors) are both convenient and practical and may be used in combination with conventional methods. This paper discusses recent advances made in E-sensors as component parts in combination with wearable sensors, in electronic sensing systems to control and detect viruses, bacteria, pathogens and fungi. In addition, future challenges using sensors to manage plant diseases are investigated.
Collapse
Affiliation(s)
- Ayat Mohammad-Razdari
- Department of Mechanical Engineering of Biosystems, Shahrekord University, 8818634141, Shahrekord, Iran.
| | - David Rousseau
- Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRAe IRHS, Université d'Angers, France
| | - Adel Bakhshipour
- Department of Biosystems Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Stephen Taylor
- Mass Spectrometry and Instrumentation Group, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK.
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus Arrosadía, Pamplona, Spain
| | - Hassan Kiani
- Department of Biosystems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Sensing Methodologies in Agriculture for Monitoring Biotic Stress in Plants Due to Pathogens and Pests. INVENTIONS 2021. [DOI: 10.3390/inventions6020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reducing agricultural losses is an effective way to sustainably increase agricultural output efficiency to meet our present and future needs for food, fiber, fodder, and fuel. Our ever-improving understanding of the ways in which plants respond to stress, biotic and abiotic, has led to the development of innovative sensing technologies for detecting crop stresses/stressors and deploying efficient measures. This article aims to present the current state of the methodologies applied in the field of agriculture towards the detection of biotic stress in crops. Key sensing methodologies for plant pathogen (or phytopathogen), as well as herbivorous insects/pests are presented, where the working principles are described, and key recent works discussed. The detection methods overviewed for phytopathogen-related stress identification include nucleic acid-based methods, immunological methods, imaging-based techniques, spectroscopic methods, phytohormone biosensing methods, monitoring methods for plant volatiles, and active remote sensing technologies. Whereas the pest-related sensing techniques include machine-vision-based methods, pest acoustic-emission sensors, and volatile organic compound-based stress monitoring methods. Additionally, Comparisons have been made between different sensing techniques as well as recently reported works, where the strengths and limitations are identified. Finally, the prospective future directions for monitoring biotic stress in crops are discussed.
Collapse
|
9
|
Oulghazi S, Sarfraz S, Zaczek-Moczydłowska MA, Khayi S, Ed-Dra A, Lekbach Y, Campbell K, Novungayo Moleleki L, O’Hanlon R, Faure D. Pectobacterium brasiliense: Genomics, Host Range and Disease Management. Microorganisms 2021; 9:E106. [PMID: 33466309 PMCID: PMC7824751 DOI: 10.3390/microorganisms9010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Pectobacterium brasiliense (Pbr) is considered as one of the most virulent species among the Pectobacteriaceae. This species has a broad host range within horticulture crops and is well distributed elsewhere. It has been found to be pathogenic not only in the field causing blackleg and soft rot of potato, but it is also transmitted via storage causing soft rot of other vegetables. Genomic analysis and other cost-effective molecular detection methods such as a quantitative polymerase chain reaction (qPCR) are essential to investigate the ecology and pathogenesis of the Pbr. The lack of fast, field deployable point-of-care testing (POCT) methods, specific control strategies and current limited genomic knowledge make management of this species difficult. Thus far, no comprehensive review exists about Pbr, however there is an intense need to research the biology, detection, pathogenicity and management of Pbr, not only because of its fast distribution across Europe and other countries but also due to its increased survival to various climatic conditions. This review outlines the information available in peer-reviewed literature regarding host range, detection methods, genomics, geographical distribution, nomenclature and taxonomical evolution along with some of the possible management and control strategies. In summary, the conclusions and a further directions highlight the management of this species.
Collapse
Affiliation(s)
- Said Oulghazi
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP.11201, Zitoune Meknes 50000, Morocco; (S.O.); (A.E.-D.)
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS University Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Sohaib Sarfraz
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Maja A. Zaczek-Moczydłowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; (M.A.Z.-M.); (K.C.)
| | - Slimane Khayi
- Biotechnology Research Unit, CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| | - Abdelaziz Ed-Dra
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP.11201, Zitoune Meknes 50000, Morocco; (S.O.); (A.E.-D.)
| | - Yassir Lekbach
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China;
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; (M.A.Z.-M.); (K.C.)
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Richard O’Hanlon
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, UK;
- Department of Agriculture, Food and the Marine, D02 WK12 Dublin 2, Ireland
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS University Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|