1
|
Pohanka M, Zakova J. Urine Test Strip Quantitative Assay with a Smartphone Camera. Int J Anal Chem 2024; 2024:6004970. [PMID: 38529171 PMCID: PMC10963100 DOI: 10.1155/2024/6004970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Urine test strips for urinalysis are a common diagnostic tool with minimal costs and are used in various situations including homecare and hospitalization. The coloration scaled by the naked eye is simple, but it is suitable for semiquantitative analysis only. In this paper, a colorimetric assay is developed based on a smartphone digital camera and urine test strips. Assays of pH, albumin, glucose, and lipase activity were performed as a tool for the diagnosis of aciduria, alkaluria, glycosuria, proteinuria, and leukocyturia. The RGB color channels were analyzed in the colorimetric assay, and the assay exerted good sensitivity, and all the particular diagnoses proved to be reliable. The limits of detection for glucose (0.11 mmol/L), albumin (0.15 g/L), and lipase (2.50 U/μL) were low enough to cover the expected physiological concentration, and the range for pH was also satisfactory. The urine test strips with a camera as an output detector proved applicability to spiked urine samples, and the results were also well in comparison to the standard assays which confirms the practical relevance of the presented findings.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
| | - Jitka Zakova
- Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
| |
Collapse
|
2
|
Li S, Chen Y, Zhang L, Li R, Kang N, Hou J, Wang J, Bao Y, Jiang F, Zhu R, Wang C, Zhang L. An environment-wide association study for the identification of non-invasive factors for type 2 diabetes mellitus: Analysis based on the Henan Rural Cohort study. Diabetes Res Clin Pract 2023; 204:110917. [PMID: 37748711 DOI: 10.1016/j.diabres.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
AIM To explore the influencing factors of Type 2 diabetes mellitus (T2DM) in the rural population of Henan Province and evaluate the predictive ability of non-invasive factors to T2DM. METHODS A total of 30,020 participants from the Henan Rural Cohort Study in China were included in this study. The dataset was randomly divided into a training set and a testing set with a 50:50 split for validation purposes. We used logistic regression analysis to investigate the association between 56 factors and T2DM in the training set (false discovery rate < 5 %) and significant factors were further validated in the testing set (P < 0.05). Gradient Boosting Machine (GBM) model was used to determine the ability of the non-invasive variables to classify T2DM individuals accurately and the importance ranking of these variables. RESULTS The overall population prevalence of T2DM was 9.10 %. After adjusting for age, sex, educational level, marital status, and body measure index (BMI), we identified 13 non-invasive variables and 6 blood biochemical indexes associated with T2DM in the training and testing dataset. The top three factors according to the GBM importance ranking were pulse pressure (PP), urine glucose (UGLU), and waist-to-hip ratio (WHR). The GBM model achieved a receiver operating characteristic (AUC) curve of 0.837 with non-invasive variables and 0.847 for the full model. CONCLUSIONS Our findings demonstrate that non-invasive variables that can be easily measured and quickly obtained may be used to predict T2DM risk in rural populations in Henan Province.
Collapse
Affiliation(s)
- Shuoyi Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ying Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Liying Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jing Wang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yining Bao
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feng Jiang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ruifang Zhu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Lei Zhang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia; Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
3
|
Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. NATURE REVIEWS. MATERIALS 2022; 7:887-907. [PMID: 35910814 PMCID: PMC9306444 DOI: 10.1038/s41578-022-00460-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.
Collapse
Affiliation(s)
- H. Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Peter Q. Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | | | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, León, Mexico
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, UK
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
- Institute of Medical Engineering & Science, Department of Biological Engineering, MIT, Cambridge, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Muljadi M, Cheng CM, Shen CJ. Development of a Tetrazolium-Derived Paper-Based Diagnostic Device as an Early, Alternative Bacteria Screening Tool. MICROMACHINES 2021; 13:44. [PMID: 35056209 PMCID: PMC8779278 DOI: 10.3390/mi13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
(1) Background: The complexity, amount of time, and the large amount of resource required to perform gold-standard bacteria culture procedures makes it difficult to perform timely pathogenic analyses, especially in areas where such resources are not readily available. A paper-based biochemical analytical tool can potentially tackle problems economically in terms of time and convenience, potentially finding utility in applications where simple and timely detection of bacteria is necessary; (2) Methods: The utility of paper-based MTT-PMS strips was tested using a simple colorimetric analytical methodology; (3) Results: Sufficient evidence was obtained to suggest that the strips can potentially be used as a rapid and convenient early, alternative bacteria screening tool for a variety of applications; (4) Conclusions: The potential of strips for the rapid detection of bacteria compared to standard bacteria culture is a key advantage in certain clinical, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Michael Muljadi
- Institute of Biomedical Engineering, National Tsinghua University, Hsinchu 300, Taiwan; (M.M.); (C.-M.C.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsinghua University, Hsinchu 300, Taiwan; (M.M.); (C.-M.C.)
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|