1
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
3
|
Sadr S, Lotfalizadeh N, Ghafouri SA, Delrobaei M, Komeili N, Hajjafari A. Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet Med Sci 2023; 9:2118-2131. [PMID: 37433046 PMCID: PMC10508580 DOI: 10.1002/vms3.1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
Nanotechnology is an innovative, promising technology with a great scope of applications and socioeconomic potential in the poultry industry sector. Nanoparticles (NPs) show the advantages of high absorption and bioavailability with more effective delivery to the target tissue than their bulk particles. Various nanomaterials are available in different forms, sizes, shapes, applications, surface modifications, charges and natures. Nanoparticles can be utilised in the delivery of medicines, targeting them to their right effective site in the body and, at the same time, decreasing their toxicity and side effects. Furthermore, nanotechnology can be beneficial in the diagnosis of diseases and prevention of them and in enhancing the quality of animal products. There are different mechanisms through which NPs could exert their action. Despite the vast benefits of NPs in poultry production, some concerns about their safety and hazardous effects should be considered. Therefore, this review article focuses on NPs' types, manufacture, mechanism of action and applications regarding safety and hazard impact.
Collapse
Affiliation(s)
- Soheil Sadr
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Narges Lotfalizadeh
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Seyed Ali Ghafouri
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Matineh Delrobaei
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Nima Komeili
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Ashkan Hajjafari
- Faculty of Veterinary MedicineDepartment of Pathobiology, Islamic Azad University Olom TahghighatTehranIran
| |
Collapse
|
4
|
Qin C, Wang Y, Hu J, Wang T, Liu D, Dong J, Lu Y. Artificial Olfactory Biohybrid System: An Evolving Sense of Smell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204726. [PMID: 36529960 PMCID: PMC9929144 DOI: 10.1002/advs.202204726] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The olfactory system can detect and recognize tens of thousands of volatile organic compounds (VOCs) at low concentrations in complex environments. Bioelectronic nose (B-EN), which mimics olfactory systems, is becoming an emerging sensing technology for identifying VOCs with sensitivity and specificity. B-ENs integrate electronic sensors with bioreceptors and pattern recognition technologies to enable medical diagnosis, public security, environmental monitoring, and food safety. However, there is currently no commercially available B-EN on the market. Apart from the high selectivity and sensitivity necessary for volatile organic compound analysis, commercial B-ENs must overcome issues impacting sensor operation and other problems associated with odor localization. The emergence of nanotechnology has provided a novel research concept for addressing these problems. In this work, the structure and operational mechanisms of biomimetic olfactory systems are discussed, with an emphasis on the development and immobilization of materials. Various biosensor applications and current developments are reviewed. Challenges and opportunities for fulfilling the potential of artificial olfactory biohybrid systems in fundamental and practical research are investigated in greater depth.
Collapse
Affiliation(s)
- Chuanting Qin
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yi Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Ting Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Dong Liu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jian Dong
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
5
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Wasilewski T, Szulczyński B, Dobrzyniewski D, Jakubaszek W, Gębicki J, Kamysz W. Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications. BIOSENSORS 2022; 12:309. [PMID: 35624609 PMCID: PMC9138522 DOI: 10.3390/bios12050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Cleaning a quartz crystal microbalance (QCM) plays a crucial role in the regeneration of its biosensors for reuse. Imprecise removal of a receptor layer from a transducer's surface can lead to unsteady operation during measurements. This article compares three approaches to regeneration of the piezoelectric transducers using the electrochemical, oxygen plasma and Piranha solution methods. Optimization of the cleaning method allowed for evaluation of the influence of cleaning on the surface of regenerated biosensors. The effectiveness of cleaning the QCM transducers with a receptor layer in the form of a peptide with the KLLFDSLTDLKKKMSEC-NH2 sequence was described. Preliminary cleaning was tested for new electrodes to check the potential impact of the cleaning on deposition and the transducer's operation parameters. The effectiveness of the cleaning was assessed via the measurement of a resonant frequency of the QCM transducers. Based on changes in the resonant frequency and the Sauerbrey equation, it was possible to evaluate the changes in mass adsorption on the transducer's surface. Moreover, the morphology of the QCM transducer's surface subjected to the selected cleaning techniques was presented with AFM imaging. The presented results confirm that each method is suitable for peptide-based biosensors cleaning. However, the most invasive seems to be the Piranha method, with the greatest decrease in performance after regeneration cycles (25% after three cycles). The presented techniques were evaluated for their efficiency with respect to a selected volatile compound, which in the future should allow reuse of the biosensors in particular applications, contributing to cost reduction and extension of the sensors' lifetime.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland; (W.J.); (W.K.)
| | - Bartosz Szulczyński
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland; (B.S.); (D.D.); (J.G.)
| | - Dominik Dobrzyniewski
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland; (B.S.); (D.D.); (J.G.)
| | - Weronika Jakubaszek
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland; (W.J.); (W.K.)
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland; (B.S.); (D.D.); (J.G.)
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland; (W.J.); (W.K.)
| |
Collapse
|
7
|
Wasilewski T, Brito NF, Szulczyński B, Wojciechowski M, Buda N, Melo ACA, Kamysz W, Gębicki J. Olfactory Receptor-based Biosensors as Potential Future Tools in Medical Diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Wu C, Zhu P, Liu Y, Du L, Wang P. Field-Effect Sensors Using Biomaterials for Chemical Sensing. SENSORS 2021; 21:s21237874. [PMID: 34883883 PMCID: PMC8659547 DOI: 10.3390/s21237874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
After millions of years of evolution, biological chemical sensing systems (i.e., olfactory and taste systems) have become very powerful natural systems which show extreme high performances in detecting and discriminating various chemical substances. Creating field-effect sensors using biomaterials that are able to detect specific target chemical substances with high sensitivity would have broad applications in many areas, ranging from biomedicine and environments to the food industry, but this has proved extremely challenging. Over decades of intense research, field-effect sensors using biomaterials for chemical sensing have achieved significant progress and have shown promising prospects and potential applications. This review will summarize the most recent advances in the development of field-effect sensors using biomaterials for chemical sensing with an emphasis on those using functional biomaterials as sensing elements such as olfactory and taste cells and receptors. Firstly, unique principles and approaches for the development of these field-effect sensors using biomaterials will be introduced. Then, the major types of field-effect sensors using biomaterials will be presented, which includes field-effect transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive electrolyte–insulator–semiconductor (EIS) sensors. Finally, the current limitations, main challenges and future trends of field-effect sensors using biomaterials for chemical sensing will be proposed and discussed.
Collapse
Affiliation(s)
- Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| |
Collapse
|
9
|
Full J, Baumgarten Y, Delbrück L, Sauer A, Miehe R. Market Perspectives and Future Fields of Application of Odor Detection Biosensors within the Biological Transformation-A Systematic Analysis. BIOSENSORS-BASEL 2021; 11:bios11030093. [PMID: 33806819 PMCID: PMC8004717 DOI: 10.3390/bios11030093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
The technological advantages that biosensors have over conventional technical sensors for odor detection and the role they play in the biological transformation have not yet been comprehensively analyzed. However, this is necessary for assessing their suitability for specific fields of application as well as their improvement and development goals. An overview of biological basics of olfactory systems is given and different odor sensor technologies are described and classified in this paper. Specific market potentials of biosensors for odor detection are identified by applying a tailored methodology that enables the derivation and systematic comparison of both the performance profiles of biosensors as well as the requirement profiles for various application fields. Therefore, the fulfillment of defined requirements is evaluated for biosensors by means of 16 selected technical criteria in order to determine a specific performance profile. Further, a selection of application fields, namely healthcare, food industry, agriculture, cosmetics, safety applications, environmental monitoring for odor detection sensors is derived to compare the importance of the criteria for each of the fields, leading to market-specific requirement profiles. The analysis reveals that the requirement criteria considered to be the most important ones across all application fields are high specificity, high selectivity, high repeat accuracy, high resolution, high accuracy, and high sensitivity. All these criteria, except for the repeat accuracy, can potentially be better met by biosensors than by technical sensors, according to the results obtained. Therefore, biosensor technology in general has a high application potential for all the areas of application under consideration. Health and safety applications especially are considered to have high potential for biosensors due to their correspondence between requirement and performance profiles. Special attention is paid to new areas of application that require multi-sensing capability. Application scenarios for multi-sensing biosensors are therefore derived. Moreover, the role of biosensors within the biological transformation is discussed.
Collapse
Affiliation(s)
- Johannes Full
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
- Correspondence: ; Tel.: +49-711-970-1434
| | - Yannick Baumgarten
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| | - Lukas Delbrück
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| | - Alexander Sauer
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
- Institute for Energy Efficiency in Production (EEP), University of Stuttgart, 70569 Stuttgart, Germany
| | - Robert Miehe
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| |
Collapse
|