1
|
Di Martino P, Marcozzi V, Bibbò S, Ghinassi B, Di Baldassarre A, Gaggi G, Di Credico A. Unraveling the Epigenetic Landscape: Insights into Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Brain Sci 2024; 14:553. [PMID: 38928553 PMCID: PMC11202179 DOI: 10.3390/brainsci14060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Pierpaolo Di Martino
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Valentina Marcozzi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Sandra Bibbò
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Ricci F, Di Credico A, Gaggi G, Iannetti G, Ghinassi B, Gallina S, Olshansky B, Di Baldassarre A. Metoprolol disrupts inflammatory response of human cardiomyocytes via β-arrestin2 biased agonism and NF-κB signaling modulation. Biomed Pharmacother 2023; 168:115804. [PMID: 39491416 DOI: 10.1016/j.biopha.2023.115804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024] Open
Abstract
AIMS Recent evidence supports non-class cardioprotective effects of metoprolol against neutrophil-mediated ischemia-reperfusion injury during exacerbated inflammation. Whether metoprolol exerts direct anti-inflammatory effect on cardiomyocytes is unknown. Accordingly, we aimed to investigate the direct anti-inflammatory effects of metoprolol in a cellular model of human induced pluripotent stem cell-derived cardiomyocytes (hiCMs) and to explore the role of β-arrestin2 (β-ARR2) biased agonism signaling pathway. METHODS AND RESULTS hiCMs were treated with TNF-α for 24 h, followed by 4-hour treatment with metoprolol or esmolol. Electrical response of hiCMs to β1-selective blockade was assessed by microelectrode arrays technology. The effect on inflammatory and adhesion molecule expression was evaluated in wild-type and β-ARR2 silenced hiCMs. To silence β-ARR2 expression, hiCMs were transfected with a specific small interfering RNA targeting β-ARR2 mRNA and preventing its translation. TNF-α stimulation boosted the expression of IκB, NF-κB, IL1β, IL6, and VCAM1 in hiCMs. TNF-α-treated hiCMs showed similar physiological responses to metoprolol and esmolol, with no difference in field potential duration and beat period recorded. Adding metoprolol significantly decreased inflammatory response patterns in wild-type hiCMs by dampening TNF-α induced expression of NF-κB, IL1β, and IL6, but not in β-ARR2-knockout hiCMs. A similar response was not observed in presence of β1-selective blockade with esmolol. CONCLUSIONS Metoprolol exerts a non-class direct anti-inflammatory effect on hi-CMs. β1-selective blockade with metoprolol disrupts inflammatory responses induced by TNF-α and induces significant inhibition of NF-κB signaling cascade via β-ARR2 biased agonism. If confirmed at clinical level, metoprolol could be tested and repurposed to treat cardiac inflammatory disorders.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, G.d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy and University Cardiology Division, Heart Department, SS Annunziata University Hospital, Chieti, Italy; Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, and Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, and Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanni Iannetti
- Department of Neuroscience, Imaging and Clinical Sciences, G.d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy and University Cardiology Division, Heart Department, SS Annunziata University Hospital, Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, and Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, G.d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy and University Cardiology Division, Heart Department, SS Annunziata University Hospital, Chieti, Italy
| | | | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, and Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
3
|
Gaggi G, Di Credico A, Barbagallo F, Ghinassi B, Di Baldassarre A. Bisphenols and perfluoroalkyls alter human stem cells integrity: A possible link with infertility. ENVIRONMENTAL RESEARCH 2023; 235:116487. [PMID: 37419196 DOI: 10.1016/j.envres.2023.116487] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Bisphenols and Perfluoroalkyls are chemical compounds widely used in industry known to be endocrine disruptors (EDs). Once ingested through contaminated aliments, they mimic the activity of endogenous hormones leading to a broad spectrum of diseases. Due to the extensive use of plastic in human life, particular attention should be paid to antenatal exposure to Bisphenols and Perfluoroalkyls since they cross the placental barrier and accumulates in developing embryo. Here we investigated the effects of Bisphenol-A (BPA), Bisphenol-S (BPS), perfluorooctane-sulfonate (PFOS) and perfluorooctanoic-acid (PFOA), alone or combined, on human-induced pluripotent stem cells (hiPSCs) that share several biological features with the stem cells of blastocysts. Our data show that these EDs affect hiPSC inducing a great mitotoxicity and dramatic changes in genes involved in the maintenance of pluripotency, germline specification, and epigenetic regulation. We also evidenced that these chemicals, when combined, may have additive, synergistic but also negative effects. All these data suggest that antenatal exposure to these EDs may affect the integrity of stem cells in the developing embryos, interfering with critical stages of early human development that might be determinant for fertility. The observation that the effects of exposure to a combination of these chemicals are not easily foreseeable further highlights the need for wider awareness of the complexity of the EDs effects on human health and of the social and economic burden attributable to these compounds.
Collapse
Affiliation(s)
- Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | - Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy.
| | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
4
|
Gaggi G, Di Credico A, Barbagallo F, Ballerini P, Ghinassi B, Di Baldassarre A. Antenatal Exposure to Plastic Pollutants: Study of the Bisphenols and Perfluoroalkyls Effects on Human Stem Cell Models. EXPOSURE AND HEALTH 2023. [DOI: 10.1007/s12403-023-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
AbstractEndocrine disruptors (EDs), such as Bisphenols (BPs) and Perfluoroalkyls (PFs), are a class of plastic pollutants widely used in industrial applications. Human exposure to these molecules usually occurs through ingestion of contaminated food and water. Once entered the human body they can interfere with endogenous hormone signaling, leading to a wide spectrum of diseases. It has been reported that BPs and PFs can cross the placental barrier accumulating in the fetal serum, but the detrimental consequences for human development remain to be clarified. Here we analyze the effects of different doses of bisphenol A and S (BPA, BPS) perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on proliferation and mitochondrial health on different types of stem cells: through an integrated approach that combines data from pluripotent stem cells (hiPSCs) with that from the “environment” in which the embryo develops (fetal annexes-derived perinatal stem cells) we verified the potential developmental toxicity of the in utero EDs exposure. Data obtained showed that overall, BPs, and PFs tended to increase the proliferation rate of perinatal stem cells; a similar response was observed in hiPSCs exposed to very low doses of BPs and PFs, while at higher concentrations these chemicals were toxic; in addition, both the BPs and the PFs exerted a mitotoxic effects hiPSCs at all the concentration studied. All these data suggest that antenatal exposure to BPs and PFs, also at very low concentrations, may modify the biological characteristics of stem cells present in both the developing fetus and the fetal annexes, thus perturbing normal human development.
Collapse
|
5
|
Nanoporous gold microelectrode arrays using microchips: A highly sensitive and cost-effective platform for electroanalytical applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Gaggi G, Di Credico A, Guarnieri S, Mariggiò MA, Di Baldassarre A, Ghinassi B. Human mesenchymal amniotic fluid stem cells reveal an unexpected neuronal potential differentiating into functional spinal motor neurons. Front Cell Dev Biol 2022; 10:936990. [PMID: 35938174 PMCID: PMC9354810 DOI: 10.3389/fcell.2022.936990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
Human amniotic fluids stem cells (hAFSCs) can be easily isolated from the amniotic fluid during routinely scheduled amniocentesis. Unlike hiPSCs or hESC, they are neither tumorigenic nor immunogenic and their use does not rise ethical or safety issues: for these reasons they may represent a good candidate for the regenerative medicine. hAFSCs are generally considered multipotent and committed towards the mesodermal lineages; however, they express many pluripotent markers and share some epigenetic features with hiPSCs. Hence, we hypothesized that hAFSCs may overcome their mesodermal commitment differentiating into to ectodermal lineages. Here we demonstrated that by the sequential exposure to specific factors, hAFSCs can give rise to spinal motor neurons (MNs), as evidenced by the gradual gene and protein upregulation of early and late MN markers (PAX6, ISL1, HB9, NF-L, vAChT). When co-cultured with myotubes, hAFSCs-derived MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle contractions. These data demonstrated the hAFSCs are not restricted to mesodermal commitment and can generate functional MNs thus outlining an ethically acceptable strategy for the study and treatment of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Sciences of Aging, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Andrea Di Credico
- Department of Medicine and Sciences of Aging, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
- Functional Biotechnologies Lab, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
- Functional Biotechnologies Lab, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Sciences of Aging, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
- *Correspondence: Angela Di Baldassarre,
| | - Barbara Ghinassi
- Department of Medicine and Sciences of Aging, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
| |
Collapse
|
7
|
Xu S, Deng Y, Luo J, Liu Y, He E, Yang Y, Zhang K, Sha L, Dai Y, Ming T, Song Y, Jing L, Zhuang C, Xu Q, Cai X. A Neural Sensor with a Nanocomposite Interface for the Study of Spike Characteristics of Hippocampal Neurons under Learning Training. BIOSENSORS 2022; 12:bios12070546. [PMID: 35884349 PMCID: PMC9312960 DOI: 10.3390/bios12070546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Both the cellular- and population-level properties of involved neurons are essential for unveiling the learning and memory functions of the brain. To give equal attention to these two aspects, neural sensors based on microelectrode arrays (MEAs) have been in the limelight due to their noninvasive detection and regulation capabilities. Here, we fabricated a neural sensor using carboxylated graphene/3,4-ethylenedioxythiophene:polystyrenesulfonate (cGO/PEDOT:PSS), which is effective in sensing and monitoring neuronal electrophysiological activity in vitro for a long time. The cGO/PEDOT:PSS-modified microelectrodes exhibited a lower electrochemical impedance (7.26 ± 0.29 kΩ), higher charge storage capacity (7.53 ± 0.34 mC/cm2), and improved charge injection (3.11 ± 0.25 mC/cm2). In addition, their performance was maintained after 2 to 4 weeks of long-term cell culture and 50,000 stimulation pulses. During neural network training, the sensors were able to induce learning function in hippocampal neurons through precise electrical stimulation and simultaneously detect changes in neural activity at multiple levels. At the cellular level, not only were three kinds of transient responses to electrical stimulation sensed, but electrical stimulation was also found to affect inhibitory neurons more than excitatory neurons. As for the population level, changes in connectivity and firing synchrony were identified. The cGO/PEDOT:PSS-based neural sensor offers an excellent tool in brain function development and neurological disease treatment.
Collapse
Affiliation(s)
- Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; (Y.D.); (L.S.); (Q.X.)
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; (Y.D.); (L.S.); (Q.X.)
| | - Yuchun Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ming
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; (Y.D.); (L.S.); (Q.X.)
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|