1
|
Wu B, Ga L, Wang Y, Ai J. Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 2023; 29:34. [PMID: 38202619 PMCID: PMC10780001 DOI: 10.3390/molecules29010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Heavy-metal ions (HMIs) as a pollutant, if not properly processed, used, and disposed of, will not only have an influence on the ecological environment but also pose significant health hazards to humans, making them a primary factor that endangers human health and harms the environment. Heavy metals come from a variety of sources, the most common of which are agriculture, industry, and sewerage. As a result, there is an urgent demand for portable, low-cost, and effective analytical tools. Bionanosensors have been rapidly developed in recent years due to their advantages of speed, mobility, and high sensitivity. To accomplish effective HMI pollution control, it is important not only to precisely pinpoint the source and content of pollution but also to perform real-time and speedy in situ detection of its composition. This study summarizes heavy-metal-ion (HMI) sensing research advances over the last five years (2019-2023), describing and analyzing major examples of electrochemical and optical bionanosensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, and Zn2+.
Collapse
Affiliation(s)
- Bin Wu
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| |
Collapse
|
2
|
Sarikaya İ, Kaleoğlu E, Çakar S, Soykan C, Özacar M. An Enhanced Photosensitive Sensor Based on ITO/MWCNTs@Polymer Composite@BiVO 4 for Quercetin Detection. BIOSENSORS 2023; 13:729. [PMID: 37504126 PMCID: PMC10377499 DOI: 10.3390/bios13070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
The fact that antioxidants scavenge free radicals in the human body and naturally treat many health problems that will occur in this way has increased the consumption of antioxidant-containing foods. However, consumption of artificially prepared antioxidants could cause cancer. Therefore, antioxidants from natural sources are preferred. Quercetin is an antioxidant present in natural samples. In this article, multi-walled carbon nanotubes (MWCNTs), a polymer composite (PC) consisting of a mixture of 15% (by mass) polystyrene (PST), 15% (by mass) polyacrylonitrile (PAN) and 70% (by mass) polyindole (PIN), and semiconducting BiVO4 were used to prepare electrodes, and then a photosensitive ITO/MWCNTs@PC@BiVO4-based sensor was fabricated for quercetin detection. Quercetin was analyzed via the photosensitive ITO/MWCNTs@PC@BiVO4 sensor in 0.1 M phosphate buffered saline (pH 7.4) solutions including various quercetin concentrations. The constructed quercetin sensor displayed a wide linear response between 10 and 200 μM and a limit of detection of 0.133 μM. The developed photosensitive ITO/MWCNTs@PC@BiVO4 demonstrated a high sensitivity (442 µA mM-1 cm-2), good reproducibility (relative standard deviation 3.6%), high selectivity and long-term stability (>49 days) towards quercetin sensing. The photoelectrochemical sensor was then applied to detection of quercetin in black tea as a real-life sample. Our study could lead to the development of novel photosensitive PC polyphenol sensors.
Collapse
Affiliation(s)
- İrem Sarikaya
- Department of Chemistry, Faculty of Science, Sakarya University, Serdivan 54050, Türkiye
| | - Esra Kaleoğlu
- Department of Chemistry, Faculty of Science, Zonguldak Bülent Ecevit University, Zonguldak 67100, Türkiye
| | - Soner Çakar
- Department of Chemistry, Faculty of Science, Zonguldak Bülent Ecevit University, Zonguldak 67100, Türkiye
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, Serdivan 54050, Türkiye
| | - Cengiz Soykan
- Department of Material Science & Nanotechnology, Faculty of Engineering, Uşak University, Uşak 64200, Türkiye
| | - Mahmut Özacar
- Department of Chemistry, Faculty of Science, Sakarya University, Serdivan 54050, Türkiye
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, Serdivan 54050, Türkiye
| |
Collapse
|
3
|
Yin L, Jayan H, Cai J, El-Seedi HR, Guo Z, Zou X. Development of a Sensitive SERS Method for Label-Free Detection of Hexavalent Chromium in Tea Using Carbimazole Redox Reaction. Foods 2023; 12:2673. [PMID: 37509765 PMCID: PMC10378949 DOI: 10.3390/foods12142673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Tea plants absorb chromium-contaminated soil and water and accumulate in tea leaves. Hexavalent chromium (Cr6+) is a very toxic heavy metal; excessive intake of tea containing Cr6+ can cause serious harm to human health. A reliable and sensitive surface-enhanced Raman spectroscopy (SERS) method was developed using Au@Ag nanoparticles as an enhanced substrate for the determination of Cr6+ in tea. The Au@AgNPs coated with carbimazole showed a highly selective reaction to Cr6+ in tea samples through a redox reaction between Cr6+ and carbimazole. The Cr6+ in the contaminated tea sample reacted with methimazole-the hydrolysate of carbimazole-to form disulfide, which led to the decrease in the Raman intensity of the peak at 595 cm-1. The logarithm of the concentration of Cr6+ has a linear relationship with the Raman intensity at the characteristic peak and showed a limit of detection of 0.945 mg/kg for the tea sample. The carbimazole functionalized Au@AgNPs showed high selectivity in analyzing Cr6+ in tea samples, even in the presence of other metal ions. The SERS detection technique established in this study also showed comparable results with the standard ICP-MS method, indicating the applicability of the established technique in practical applications.
Collapse
Affiliation(s)
- Limei Yin
- Key Laboratory of Modern Agricultural Equipment and Technology of Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianrong Cai
- Key Laboratory of Modern Agricultural Equipment and Technology of Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Lu W, Ma L, Ke S, Zhang R, Zhu W, Qin L, Wu S. Unbiased and Signal-Weakening Photoelectrochemical Hexavalent Chromium Sensing via a CuO Film Photocathode. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091479. [PMID: 37177024 PMCID: PMC10180409 DOI: 10.3390/nano13091479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Photoelectrochemical (PEC) sensors show great potential for the detection of heavy metal ions because of their low background noise, high sensitivity, and ease of integration. However, the detection limit is relatively high for hexavalent chromium (Cr(VI)) monitoring in addition to the requirement of an external bias. Herein, a CuO film is readily synthesized as the photoactive material via reactive sputtering and thermal annealing in the construction of a PEC sensing photocathode for Cr(VI) monitoring. A different mechanism (i.e., Signal-Weakening PEC sensing) is confirmed by examining the electrochemical impedance and photocurrent response of different CuO film photoelectrodes prepared with the same conditions in contact with various solutions containing concentration-varying Cr(VI) for different durations. The detection of Cr(VI) is successfully achieved with the Signal-Weakening PEC response; a drop of photocathode signal with an increasing Cr(VI) concentration from the steric hindrance effect of the in situ formed Cr(OH)3 precipitates. The photocurrent of the optimized CuO film photocathode linearly declines as the concentration of Cr(VI) increases from 0.08 to 20 µM, with a detection limit down to 2.8 nM (Signal/Noise = 3) and a fitted sensitivity of 4.22 µA·μM-1. Moreover, this proposed sensing route shows operation simplicity, satisfactory selectivity, and reproducibility.
Collapse
Affiliation(s)
- Wenxiang Lu
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Lu Ma
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Shengchen Ke
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Rouxi Zhang
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Weijian Zhu
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Linling Qin
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Shaolong Wu
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
5
|
Li X, Huang J, Ding J, Xiu M, Huang K, Cui K, Zhang J, Hao S, Zhang Y, Yu J, Huang Y. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO 4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. BIOSENSORS 2023; 13:103. [PMID: 36671939 PMCID: PMC9855910 DOI: 10.3390/bios13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/06/2023]
Abstract
A dual-mode lab-on-paper device based on BiVO4/FeOOH nanocomposites as an efficient generating photoelectrochemical (PEC)/colorimetric signal reporter has been successfully constructed by integration of the lab-on-paper sensing platform and PEC/colorimetric detection technologies for sensitive detection of carcinoembryonic antigen (CEA). Concretely, the BiVO4/FeOOH nanocomposites were in situ synthesized onto the paper-working electrode (PWE) through hydrothermal synthesis of the BiVO4 layer on cellulose fibers (paper-based BiVO4) which were initially modified by Au nanoparticles for improving the conductivity of three dimensional PWE, and then the photo-electrodeposition of FeOOH onto the paper-based BiVO4 to construct the paper-based BiVO4/FeOOH for the portable dual-mode lab-on-paper device. The obtained nanocomposites with an FeOOH needle-like structure deposited on the BiVO4 layer exhibits enhanced PEC response activity due to its effective separation of the electron-hole pair which could further accelerate the PEC conversion efficiency during the sensing process. With the introduction of CEA targets onto the surface of nanocomposite-modified PWE assisted by the interaction with the CEA antibody from a specific recognition property, a signal-off PEC signal state with a remarkable photocurrent response decreasing trend can be achieved, realizing the quantitative detection of CEA with the PEC signal readout mode. By means of a smart origami paper folding, the colorimetric signal readout is achieved by catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB in the presence of H2O2 due to the satisfied enzyme-like catalytic activity of the needle-like structure, FeOOH, thereby achieving the dual-mode signal readout system for the proposed lab-on-paper device. Under the optimal conditions, the PEC and colorimetric signals measurement were effectively carried out, and the corresponding linear ranges were 0.001-200 ng·mL-1 and 0.5-100 ng·mL-1 separately, with the limit of detection of 0.0008 and 0.013 ng·mL-1 for each dual-mode. The prepared lab-on-paper device also presented a successful application in serum samples for the detection of CEA, providing a potential pathway for the sensitive detection of target biomarkers in clinical application.
Collapse
Affiliation(s)
- Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiayu Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Li L, Chen J, Xiao C, Luo Y, Zhong N, Xie Q, Chang H, Zhong D, Xu Y, Zhao M, Liao Q. Recent advances in photoelectrochemical sensors for detection of ions in water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Kadam AN, Babu B, Lee SW, Kim J, Yoo K. Morphological guided sphere to dendrite BiVO 4 for highly efficient organic pollutant removal and photoelectrochemical performance under solar light. CHEMOSPHERE 2022; 305:135461. [PMID: 35764107 DOI: 10.1016/j.chemosphere.2022.135461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Monoclinic BiVO4 (m-BiVO4) has been reported as promising phase for solar light driven photocatalysis. However, in the case of morphology guided BiVO4 with different synthetic conditions maintaining the m-BiVO4 phase remains a substantial challenge for achieving an efficient photocatalyst driven by solar light. Herein, a simple hydrothermal approach was used to produce well-defined template free m-BiVO4 dendrites with distinct branches for photo catalytically removal of organic pollutant and photocurrent generation. The development of monoclinic dendrite BiVO4 was confirmed after comprehensive structural, morphological, and optical examinations. FE-SEM images of m-BiVO4 revealed transformation of spherical to dendritic morphology with distinct branches by simply changing the HNO3 to NaOH ratios from 2:1 to 2:2, which are named as BVO 2-1 and BVO 2-2, respectively. The BVO 2-2 dendrites exhibited improved activity of 98% towards methylene blue (MB) photodegradation upon simulated solar light irradiation. The BVO 2-2 dendrites photoelectrode showed an outstanding photocurrent density of 1.4245 mAcm-2 than that of the BVO 2-1 spherical photoelectrode (0.7367 mAcm-2). Enhanced photocatalytic and photoelectrochemical action, could be ascribed to the unique morphological changes provides photoactive sites, harvest more light utilization together with higher separation of e-/h+ pairs. Furthermore, photocatalytic mechanism is investigated based on scavenger trapping agent, valence band XPS, UV Visible DRS and PL study. Our findings could pave the way for the development of dendritic nanostructure photocatalysts with improved photocatalytic activity.
Collapse
Affiliation(s)
- Abhijit N Kadam
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do, 461-701, South Korea
| | - Bathula Babu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do, 461-701, South Korea.
| | - Jonghoon Kim
- Department of Electrical Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| | - Kisoo Yoo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
8
|
Hu J, Wang X, Wei H, Zhao L, Yao B, Zhang C, Zhou J, Liu J, Yang S. Solid-Phase Synthesis of Red Fluorescent Carbon Dots for the Dual-Mode Detection of Hexavalent Chromium and Cell Imaging. BIOSENSORS 2022; 12:bios12060432. [PMID: 35735579 PMCID: PMC9221384 DOI: 10.3390/bios12060432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
The excellent optical properties and biocompatibility of red fluorescence carbon dots (R-CDs) provide a new approach for the effective analysis of hexavalent chromium Cr(VI) in environmental and biological samples. However, the application of R-CDs is still limited by low yield and unfriendly synthesis route. In this study, we developed a new type of R-CDs based on a simple and green solid-phase preparation strategy. The synthesized R-CDs can emit bright red fluorescence with an emission wavelength of 625 nm and also have an obvious visible light absorption capacity. Furthermore, the absorption and fluorescence signals of the R-CDs aqueous solution are sensitive to Cr(VI), which is reflected in color change and fluorescence quenching. Based on that, a scanometric and fluorescent dual-mode analysis system for the rapid and accurate detection of Cr(VI) was established well within the limit of detection at 80 nM and 9.1 nM, respectively. The proposed methods also possess high specificity and were applied for the detection of Cr(VI) in real water samples. More importantly, the synthesized R-CDs with good biocompatibility were further successfully applied for visualizing intracellular Cr(VI) in Hela cells.
Collapse
Affiliation(s)
- Jinshuang Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.H.); (X.W.); (H.W.); (B.Y.); (C.Z.); (J.Z.)
| | - Xin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.H.); (X.W.); (H.W.); (B.Y.); (C.Z.); (J.Z.)
| | - Hua Wei
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.H.); (X.W.); (H.W.); (B.Y.); (C.Z.); (J.Z.)
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence: (L.Z.); (S.Y.)
| | - Boxuan Yao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.H.); (X.W.); (H.W.); (B.Y.); (C.Z.); (J.Z.)
| | - Caiyun Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.H.); (X.W.); (H.W.); (B.Y.); (C.Z.); (J.Z.)
| | - Jiarui Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.H.); (X.W.); (H.W.); (B.Y.); (C.Z.); (J.Z.)
| | - Jian Liu
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China;
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.H.); (X.W.); (H.W.); (B.Y.); (C.Z.); (J.Z.)
- Correspondence: (L.Z.); (S.Y.)
| |
Collapse
|