1
|
Milić L, Zambry NS, Ibrahim FB, Petrović B, Kojić S, Thiha A, Joseph K, Jamaluddin NF, Stojanović GM. Advances in textile-based microfluidics for biomolecule sensing. BIOMICROFLUIDICS 2024; 18:051502. [PMID: 39296324 PMCID: PMC11410389 DOI: 10.1063/5.0222244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
Textile-based microfluidic biosensors represent an innovative fusion of various multidisciplinary fields, including bioelectronics, material sciences, and microfluidics. Their potential in biomedicine is significant as they leverage textiles to achieve high demands of biocompatibility with the human body and conform to the irregular surfaces of the body. In the field of microfluidics, fabric coated with hydrophobic materials serves as channels through which liquids are transferred in precise amounts to the sensing element, which in this case is a biosensor. This paper presents a condensed overview of the current developments in textile-based microfluidics and biosensors in biomedical applications over the past 20 years (2005-2024). A literature search was performed using the Scopus database. The fabrication techniques and materials used are discussed in this paper, as these will be key in various modifications and advancements in textile-based microfluidics. Furthermore, we also address the gaps in the application of textile-based microfluidic analytical devices in biomedicine and discuss the potential solutions. Advances in textile-based microfluidics are enabled by various printing and fabric manufacturing techniques, such as screen printing, embroidery, and weaving. Integration of these devices into everyday clothing holds promise for future vital sign monitoring, such as glucose, albumin, lactate, and ion levels, as well as early detection of hereditary diseases through gene detection. Although most testing currently takes place in a laboratory or controlled environment, this field is rapidly evolving and pushing the boundaries of biomedicine, improving the quality of human life.
Collapse
Affiliation(s)
- Lazar Milić
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | | | - Bojan Petrović
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | - Sanja Kojić
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | | | - Nurul Fauzani Jamaluddin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Goran M Stojanović
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Bissen A, Yunussova N, Myrkhiyeva Z, Salken A, Tosi D, Bekmurzayeva A. Unpacking the packaged optical fiber bio-sensors: understanding the obstacle for biomedical application. Front Bioeng Biotechnol 2024; 12:1401613. [PMID: 39144482 PMCID: PMC11322460 DOI: 10.3389/fbioe.2024.1401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
A biosensor is a promising alternative tool for the detection of clinically relevant analytes. Optical fiber as a transducer element in biosensors offers low cost, biocompatibility, and lack of electromagnetic interference. Moreover, due to the miniature size of optical fibers, they have the potential to be used in microfluidic chips and in vivo applications. The number of optical fiber biosensors are extensively growing: they have been developed to detect different analytes ranging from small molecules to whole cells. Yet the widespread applications of optical fiber biosensor have been hindered; one of the reasons is the lack of suitable packaging for their real-life application. In order to translate optical fiber biosensors into clinical practice, a proper embedding of biosensors into medical devices or portable chips is often required. A proper packaging approach is frequently as challenging as the sensor architecture itself. Therefore, this review aims to give an unpack different aspects of the integration of optical fiber biosensors into packaging platforms to bring them closer to actual clinical use. Particularly, the paper discusses how optical fiber sensors are integrated into flow cells, organized into microfluidic chips, inserted into catheters, or otherwise encased in medical devices to meet requirements of the prospective applications.
Collapse
Affiliation(s)
- Aidana Bissen
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Nigara Yunussova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | | | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | | |
Collapse
|
3
|
Pulcinelli M, Pinnelli M, Massaroni C, Lo Presti D, Fortino G, Schena E. Wearable Systems for Unveiling Collective Intelligence in Clinical Settings. SENSORS (BASEL, SWITZERLAND) 2023; 23:9777. [PMID: 38139623 PMCID: PMC10747409 DOI: 10.3390/s23249777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Nowadays, there is an ever-growing interest in assessing the collective intelligence (CI) of a team in a wide range of scenarios, thanks to its potential in enhancing teamwork and group performance. Recently, special attention has been devoted on the clinical setting, where breakdowns in teamwork, leadership, and communication can lead to adverse events, compromising patient safety. So far, researchers have mostly relied on surveys to study human behavior and group dynamics; however, this method is ineffective. In contrast, a promising solution to monitor behavioral and individual features that are reflective of CI is represented by wearable technologies. To date, the field of CI assessment still appears unstructured; therefore, the aim of this narrative review is to provide a detailed overview of the main group and individual parameters that can be monitored to evaluate CI in clinical settings, together with the wearables either already used to assess them or that have the potential to be applied in this scenario. The working principles, advantages, and disadvantages of each device are introduced in order to try to bring order in this field and provide a guide for future CI investigations in medical contexts.
Collapse
Affiliation(s)
- Martina Pulcinelli
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
| | - Mariangela Pinnelli
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
| | - Carlo Massaroni
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Daniela Lo Presti
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Giancarlo Fortino
- DIMES, University of Calabria, Via P. Bucci 41C, 87036 Rende, Italy;
| | - Emiliano Schena
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
4
|
Santucci F, Nobili M, Presti DL, Massaroni C, Setola R, Schena E, Oliva G. Waveform Similarity Analysis Using Graph Mining for the Optimization of Sensor Positioning in Wearable Seismocardiography. IEEE Trans Biomed Eng 2023; 70:2788-2798. [PMID: 37027279 DOI: 10.1109/tbme.2023.3264940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
OBJECTIVE A major concern with wearable devices aiming to measure the seismocardiogram (SCG) signal is the variability of SCG waveform with the sensor position and a lack of a standard measurement procedure. We propose a method to optimize sensor positioning based on the similarity among waveforms collected through repeated measurements. METHOD we design a graph-theoretical model to evaluate the similarity of SCG signals and apply the proposed methodology to signals collected by sensors placed in different positions on the chest. A similarity score returns the optimal measurement position based on the repeatability of SCG waveforms. We tested the methodology on signals collected by using two wearable patches based on optical technology placed in two positions: mitral and aortic valve auscultation site (inter-position analysis). 11 healthy subjects were enrolled in this study. Moreover, we evaluated the influence of the subject's posture on waveform similarity with a view on ambulatory use (inter-posture analysis). RESULTS the highest similarity among SCG waveforms is obtained with the sensor on the mitral valve and the subject lying down. CONCLUSIONS our approach aims to be a step forward in the optimization of sensor positioning in the field of wearable seismocardiography. We demonstrate that the proposed algorithm is an effective method to estimate similarity among waveforms and outperforms the state-of-the-art in comparing SCG measurement sites. SIGNIFICANCE results obtained from this study can be exploited to design more efficient protocols for SCG recording in both research studies and future clinical examinations.
Collapse
|
5
|
Lo Presti D, Di Tocco J, Massaroni C, Cimini S, De Gara L, Singh S, Raucci A, Manganiello G, Woo SL, Schena E, Cinti S. Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture. Biosens Bioelectron 2023; 222:115005. [PMID: 36527829 DOI: 10.1016/j.bios.2022.115005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The devastating effects of global climate change on crop production and exponential population growth pose a major challenge to agricultural yields. To cope with this problem, crop performance monitoring is becoming increasingly necessary. In this scenario, the use of sensors and biosensors capable of detecting changes in plant fitness and predicting the evolution of their morphology and physiology has proven to be a useful strategy to increase crop yields. Flexible sensors and nanomaterials have inspired the emerging fields of wearable and on-plant portable devices that provide continuous and accurate long-term sensing of morphological, physiological, biochemical, and environmental parameters. This review provides an overview of novel plant sensing technologies by discussing wearable and integrated devices proposed for engineering plant and monitoring its morphological traits and physiological processes, as well as plant-environment interactions. For each application scenario, the state-of-the-art sensing solutions are grouped according to the plant organ on which they have been installed highlighting their main technological advantages and features. Finally, future opportunities, challenges and perspectives are discussed. We anticipate that the application of this technology in agriculture will provide more accurate measurements for farmers and plant scientists with the ability to track crop performance in real time. All of this information will be essential to enable rapid optimization of plants development through tailored treatments that improve overall plant health even under stressful conditions, with the ultimate goal of increasing crop productivity in a more sustainable manner.
Collapse
Affiliation(s)
- Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Joshua Di Tocco
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Sima Singh
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Ada Raucci
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Gelsomina Manganiello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Sheridan L Woo
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055, Naples, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy.
| | - Stefano Cinti
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055, Naples, Italy.
| |
Collapse
|
6
|
Lo Presti D, Di Tocco J, Cimini S, Cinti S, Massaroni C, D’Amato R, Caponero MA, De Gara L, Schena E. Plant Growth Monitoring: Design, Fabrication, and Feasibility Assessment of Wearable Sensors Based on Fiber Bragg Gratings. SENSORS (BASEL, SWITZERLAND) 2022; 23:361. [PMID: 36616959 PMCID: PMC9824679 DOI: 10.3390/s23010361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Global climate change and exponential population growth pose a challenge to agricultural outputs. In this scenario, novel techniques have been proposed to improve plant growth and increase crop yields. Wearable sensors are emerging as promising tools for the non-invasive monitoring of plant physiological and microclimate parameters. Features of plant wearables, such as easy anchorage to different organs, compliance with natural surfaces, high flexibility, and biocompatibility, allow for the detection of growth without impacting the plant functions. This work proposed two wearable sensors based on fiber Bragg gratings (FBGs) within silicone matrices. The use of FBGs is motivated by their high sensitivity, multiplexing capacities, and chemical inertia. Firstly, we focused on the design and the fabrication of two plant wearables with different matrix shapes tailored to specific plant organs (i.e., tobacco stem and melon fruit). Then, we described the sensors' metrological properties to investigate the sensitivity to strain and the influence of environmental factors, such as temperature and humidity, on the sensors' performance. Finally, we performed experimental tests to preliminary assess the capability of the proposed sensors to monitor dimensional changes of plants in both laboratory and open field settings. The promising results will foster key actions to improve the use of this innovative technology in smart agriculture applications for increasing crop products quality, agricultural efficiency, and profits.
Collapse
Affiliation(s)
- Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Joshua Di Tocco
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Rosaria D’Amato
- Fusion and Technologies for Nuclear Safety and Security Department, FSN-TECFIS-MNF, ENEA Research Center of Frascati, 00044 Rome, Italy
| | - Michele A. Caponero
- Fusion and Technologies for Nuclear Safety and Security Department, FSN-TECFIS-MNF, ENEA Research Center of Frascati, 00044 Rome, Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
7
|
De Tommasi F, Romano C, Lo Presti D, Massaroni C, Carassiti M, Schena E. FBG-Based Soft System for Assisted Epidural Anesthesia: Design Optimization and Clinical Assessment. BIOSENSORS 2022; 12:bios12080645. [PMID: 36005041 PMCID: PMC9405758 DOI: 10.3390/bios12080645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 12/04/2022]
Abstract
Fiber Bragg grating sensors (FBGs) are considered a valid sensing solution for a variety of medical applications. The last decade witnessed the exploitation of these sensors in applications ranging from minimally invasive surgery to biomechanics and monitoring physiological parameters. Recently, preliminary studies investigated the potential impact of FBGs in the management of epidural procedures by detecting when the needle reaches the epidural space with the loss of resistance (LOR) technique. In this article, we propose a soft and flexible FBG-based system capable of detecting the LOR, we optimized the solution by considering different designs and materials, and we assessed the feasibility of the optimized soft sensor (SS) in clinical settings. The proposed SS addresses some of the open challenges in the use of a sensing solution during epidural punctures: it has high sensitivity, it is non-invasive, the sensing element does not need to be inserted within the needle, and the clinician can follow the standard clinical practice. Our analysis highlights how the material and the design impact the system response, and thus its performance in this scenario. We also demonstrated the system’s feasibility of detecting the LOR during epidural procedures.
Collapse
Affiliation(s)
- Francesca De Tommasi
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Chiara Romano
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Massimiliano Carassiti
- Unit of Anesthesia, Intensive Care and Pain Management, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy
- Correspondence: ; Tel.: +39-062-2541-9650
| |
Collapse
|