1
|
Liu M, Zhu C, Dong Z, Wang Z, Yang H, Li J, Li K, Shen B, Li X, Leng P, Ding S, Guo J, Zhang J. Aptamer proximal enzyme cascade reactions for ultrafast detection of glucose in human blood serum. Mikrochim Acta 2025; 192:71. [PMID: 39804472 DOI: 10.1007/s00604-024-06935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into H2O2 efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2-), utilizing the generated H2O2, resulting in a distinct color change. In comparison to the free enzymes and the HRP-GOx system, APECR exhibited higher colorimetric signal. This approach achieved glucose detection within three minutes, which was significantly faster than previous methods. This method showed good sensitivity and selectivity with a limit of detection of 0.013 mM. Moreover, the practical utility of this strategy was verified by achieving rapid detection of glucose in clinical serum samples. Hence, the developed strategy has the advantages of simple operation and rapid analysis time for the detection of glucose in human serum.
Collapse
Affiliation(s)
- Min Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuanlin Zhu
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Zihe Dong
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Zhangmin Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Li
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China
| | - Ke Li
- Department of Clinical Medical Laboratory, Third People's Hospital of Chengdu, Southwest Jiaotong University Clinical Medical College/Soutwest Jiaotong University Affiliated Hospital, Chengdu, 610031, Sichuan, China
| | - Bo Shen
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China
| | - Juan Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China.
| |
Collapse
|
2
|
Kim DS, Sobhan A, Oh JH, Lee J, Park C, Lee J. Development of Single-Walled Carbon Nanotube-Based Electrodes with Enhanced Dispersion and Electrochemical Properties for Blood Glucose Monitoring. BIOSENSORS 2024; 14:630. [PMID: 39727895 DOI: 10.3390/bios14120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone. The findings revealed that SWCNTs achieved optimal dispersion without precipitation in DMF. Additionally, we observed that the electrical resistance decreased as the concentration of SWCNTs increased from 0.025 to 0.4 g/L, with significant conductivity enhancements noted between 0.2 g/L and 0.4 g/L in DMF. In constructing the biosensor platform, we employed 1-pyrenebutanoic acid succinimidyl ester (PBSE) as a linker molecule, while glucose oxidase (Gox) served as the binding substrate. The interaction between Gox and glucose led to a notable decrease in the biosensor's resistance values as glucose concentrations ranged from 0.001 to 0.1 M. These results provide foundational insights into the development of SWCNT-based electrode materials and suggest a promising pathway toward the next generation of efficient and reliable biosensors.
Collapse
Affiliation(s)
- Dong-Sup Kim
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea
| | - Abdus Sobhan
- Department of Agriculture and Applied Science, Alcorn State University, Lorman, MS 39096, USA
| | - Jun-Hyun Oh
- Department of Plant and Food Sciences, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea
| | - Jahyun Lee
- Department of Convergence Bio-Chemical Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Sinchang-Myeon, Asan-si 31538, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jinyoung Lee
- Department of Gyedang College of General Education, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea
| |
Collapse
|
3
|
Herrera-Vázquez SE, Elizalde-Velázquez GA, Gómez-Oliván LM, Chanona-Pérez JJ, Hernández-Varela JD, Hernández-Díaz M, García-Medina S, Orozco-Hernández JM, Colín-García K. Ecotoxicological evaluation of chitosan biopolymer films particles in adult zebrafish (Danio rerio): A comparative study with polystyrene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172757. [PMID: 38670364 DOI: 10.1016/j.scitotenv.2024.172757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
To mitigate the environmental impact of microplastics (MPs), the scientific community has innovated sustainable and biodegradable polymers as viable alternatives to traditional plastics. Chitosan, the deacetylated form of chitin, stands as one of the most thoroughly investigated biopolymers and has garnered significant interest due to its versatile applications in both medical and cosmetic fields. Nevertheless, there is still a knowledge gap regarding the impact that chitosan biopolymer films (CBPF) may generate in aquatic organisms. In light of the foregoing, this study aimed to assess and compare the potential effects of CBPF on the gastrointestinal tract, gills, brain, and liver of Danio rerio against those induced by MPs. The findings revealed that both CBPF and MPs induced changes in the levels of oxidative stress biomarkers across all organs. However, it is essential to note that our star plots illustrate a tendency for CBPF to activate antioxidant enzymes and for MPs to produce oxidative damage. Regarding gene expression, our findings indicate that MPs led to an up-regulation in the expression of genes associated with apoptotic response (p53, casp3, cas9, bax, and bcl2) in all fish organs. Meanwhile, CBPF produced the same effect in genes related to antioxidant response (nrf1 and nrf2). Overall, our histological observations substantiated these effects, revealing the presence of plastic particles and tissue alterations in the gills and gastrointestinal tract of fish subjected to MPs. From these results, it can be concluded that CBPF does not represent a risk to fish after long exposure.
Collapse
Affiliation(s)
- Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Josué David Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Misael Hernández-Díaz
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karla Colín-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
4
|
Skonta A, Bellou MG, Matikas TE, Stamatis H. Colorimetric Glucose Biosensor Based on Chitosan Films and Its Application for Glucose Detection in Beverages Using a Smartphone Application. BIOSENSORS 2024; 14:299. [PMID: 38920603 PMCID: PMC11201573 DOI: 10.3390/bios14060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Nowadays, biosensors are gaining increasing interest in foods' and beverages' quality control, owing to their economic production, enhanced sensitivity, specificity, and faster analysis. In particular, colorimetric biosensors can be combined with color recognition applications on smartphones for the detection of analytes, rendering the whole procedure more applicable in everyday life. Herein, chitosan (CS) films were prepared with the deep eutectic solvent (DES) choline chloride/urea/glycerol (ChCl:U:Gly). Glucose oxidase (GOx), a widely utilized enzyme in quality control, was immobilized within CS films through glutaraldehyde (GA), leading to the formation of CS/GOx films. The optimized GOx concentration and DES content were determined for the films. Moreover, the effect of the pH and temperature of the glucose oxidation reaction on the enzymatic activity of GOx was studied. The structure, stability, and specificity of the CS/GOx films as well as the Km values of free and immobilized GOx were also determined. Finally, the analytical performance of the films was studied by using both a spectrophotometer and a color recognition application on a smartphone. The results demonstrated that the films were highly accurate, specific to glucose, and stable when stored at 4 °C for 4 weeks and when reused 10 times, without evident activity loss. Furthermore, the films displayed a good linear response range (0.1-0.8 mM) and a good limit of detection (LOD, 33 μM), thus being appropriate for the estimation of glucose concentration in real samples through a smartphone application.
Collapse
Affiliation(s)
- Anastasia Skonta
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| | - Myrto G. Bellou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| | - Theodore E. Matikas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| |
Collapse
|
5
|
Grzesiakowska A, Dzióbek M, Kuchta-Gładysz M, Wojciechowska-Puchałka J, Khachatryan K, Khachatryan G, Krystyjan M. The In Vitro Toxicity Profile of ZnS and CdS Quantum Dots in Polysaccharide Carriers (Starch/Chitosan). Int J Mol Sci 2023; 25:361. [PMID: 38203532 PMCID: PMC10778649 DOI: 10.3390/ijms25010361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Nanocomposites are an emerging technology for ensuring food safety and quality. Their unique properties, attributed to nanoparticle presence, facilitate the development of sophisticated sensors and biosensors for detecting harmful substances, microbial growth, and environmental changes in food products. Smart and/or active food packaging development also benefits from the use of nanocomposites. This packaging, or portions of it, provide active protection for its contents and serve as sensors to promptly, simply, and safely identify any detrimental changes in stored food, without elaborate techniques or analyses. Films made from potato starch and chitosan were produced and quantum dots of zinc sulfide (ZnS) and cadmium sulfide (CdS)were synthesized in them for this study. The presence and dimensions of the QDs (quantum dots) were examined with scanning electron microscopy (SEM) and ultraviolet-visible (UV-VIS) spectroscopy. The study aimed to establish the toxicity profile of a starch-chitosan bionanocomposite integrated with ZnS and CdS quantum dots. Cytotoxic and genotoxic features were assessed through cytogenetic instability assessments, consisting of the alkaline comet assay, erythrocyte micronucleus assay, and peripheral blood cell viability analysis of a laboratory mouse model.
Collapse
Affiliation(s)
- Anna Grzesiakowska
- Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (A.G.); (M.K.-G.); (J.W.-P.)
| | - Magdalena Dzióbek
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Marta Kuchta-Gładysz
- Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (A.G.); (M.K.-G.); (J.W.-P.)
| | - Joanna Wojciechowska-Puchałka
- Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (A.G.); (M.K.-G.); (J.W.-P.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (K.K.); (G.K.)
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (K.K.); (G.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (K.K.); (G.K.)
| |
Collapse
|
6
|
Kuznowicz M, Jędrzak A, Jesionowski T. Nature-Inspired Biomolecular Corona Based on Poly(caffeic acid) as a Low Potential and Time-Stable Glucose Biosensor. Molecules 2023; 28:7281. [PMID: 37959700 PMCID: PMC10649105 DOI: 10.3390/molecules28217281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Herein, we present a novel biosensor based on nature-inspired poly(caffeic acid) (PCA) grafted to magnetite (Fe3O4) nanoparticles with glucose oxidase (GOx) from Aspergillus niger via adsorption technique. The biomolecular corona was applied to the fabrication of a biosensor system with a screen-printed electrode (SPE). The obtained results indicated the operation of the system at a low potential (0.1 V). Then, amperometric measurements were performed to optimize conditions like various pH and temperatures. The SPE/Fe3O4@PCA-GOx biosensor presented a linear range from 0.05 mM to 25.0 mM, with a sensitivity of 1198.0 μA mM-1 cm-2 and a limit of detection of 5.23 μM, which was compared to other biosensors presented in the literature. The proposed system was selective towards various interferents (maltose, saccharose, fructose, L-cysteine, uric acid, dopamine and ascorbic acid) and shows high recovery in relation to tests on real samples, up to 10 months of work stability. Moreover, the Fe3O4@PCA-GOx biomolecular corona has been characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Bradford assay.
Collapse
Affiliation(s)
| | - Artur Jędrzak
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland;
| |
Collapse
|
7
|
OSMANOĞULLARI SC, SÖYLEMEZ S, KARAKURT O, ÖZDEMİR HACIOĞLU S, ÇIRPAN A, TOPPARE L. Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. Turk J Chem 2023; 47:1271-1284. [PMID: 38173753 PMCID: PMC10760843 DOI: 10.55730/1300-0527.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2024] Open
Abstract
Subtle engineering for the generation of a biosensor from a conjugated polymer with the inclusion of fluorine-substituted benzothiadiazole and indole moieties is reported. The engineering includes the electrochemical copolymerization of the indole-6-carboxylic acid (M1) and 5-fluoro-4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (M2) on the indium tin oxide and graphite electrode surfaces for the investigation of both their electrochemical properties and biosensing abilities with their copolymer counterparts. The intermediates and final conjugated polymers, Poly(M1) [P-In6C], Poly(M2) [P-FBTz], and copoly(M1 and M2) [P-In6CFBTz], were entirely characterized by 1H NMR, 13C NMR, CV, UV-Vis-NIR spectrophotometry, and SEM techniques. HOMO energy levels of electrochemically obtained polymers were calculated from the oxidation onsets in anodic scans as -4.78 eV, -5.23 eV, and -4.89 eV, and optical bandgap (Egop) values were calculated from the onset of the lowest-energy π-π* transitions as 2.26 eV, 1.43 eV, and 1.59 eV for P-In6C, P-FBTz, and P-In6CFBTz, respectively. By incorporation of fluorine-substituted benzothiadiazole (M2) into the polymer backbone by electrochemical copolymerization, the poor electrochemical properties of P-In6C were remarkably improved. The polymer P-In6CFBTz demonstrated striking electrochemical properties such as a lower optical band gap, red-shifted absorption, multielectrochromic behavior, a lower switching time, and higher optical contrast. Overall, the newly developed copolymer, which combined the features of each monomer, showed superior electrochemical properties and was tested as a glucose-sensing framework, offering a low detection limit (0.011 mM) and a wide linear range (0.05-0.75 mM) with high sensitivity (44.056 μA mM-1 cm-2).
Collapse
Affiliation(s)
- Sıla Can OSMANOĞULLARI
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon,
Turkiye
| | - Saniye SÖYLEMEZ
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya,
Turkiye
| | - Oğuzhan KARAKURT
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
| | - Serife ÖZDEMİR HACIOĞLU
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Basic Sciences of Engineering, Faculty of Engineering and Natural Sciences, İskenderun Technical University, Hatay,
Turkiye
| | - Ali ÇIRPAN
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Polymer Science and Technology, Middle East Technical University, Ankara,
Turkiye
- Center for Solar Energy Research and Application (GÜNAM), Middle East Technical University, Ankara,
Turkiye
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara,
Turkiye
| | - Levent TOPPARE
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Polymer Science and Technology, Middle East Technical University, Ankara,
Turkiye
- Department of Biotechnology, Middle East Technical University, Ankara,
Turkiye
| |
Collapse
|
8
|
Herbei EE, Alexandru P, Busila M. Cyclic Voltammetry of Screen-Printed Carbon Electrode Coated with Ag-ZnO Nanoparticles in Chitosan Matrix. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3266. [PMID: 37110102 PMCID: PMC10143143 DOI: 10.3390/ma16083266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
In this paper, the authors describe the fabrication of nanocomposite chitosan-based systems of zinc oxide (ZnO), silver (Ag) and Ag-ZnO. Recently, the development of coated screen-printed electrodes using metal and metal oxide nanoparticles (NPs) for the specific detection and monitoring of different cancer tumors has been obtaining important results. Ag, ZnO NPs and Ag-ZnO prepared by the hydrolysis of zinc acetate blended with a chitosan (CS) matrix were used for the surface modification of screen-printed carbon electrodes (SPCEs) in order to analyze the electrochemical behavior of the typical redox system of a 10 mM potassium ferrocyanide-0.1 M buffer solution (BS). The solutions of CS, ZnO/CS, Ag/CS and Ag-ZnO/CS were prepared in order to modify the carbon electrode surface, and were measured at different scan rates from 0.02 V/s to 0.7 V/s by cyclic voltammetry. The cyclic voltammetry (CV) was performed on a house-built potentiostat (HBP). The cyclic voltammetry of the measured electrodes showed the influence of varying the scan rate. The variation of the scan rate has an influence on the intensity of the anodic and cathodic peak. Both values of currents (anodic and cathodic currents) have higher values for 0.1 V/s (Ia = 22 μA and Ic = -25 μA) compared to the values for 0.06 V/s (Ia = 10 μA and Ic = -14 μA). The CS, ZnO/CS, Ag/CS and Ag-ZnO/CS solutions were characterized using a field emission scanning electron microscopy (FE-SEM) with EDX elemental analysis. The modified coated surfaces of screen-printed electrodes were analyzed using optical microscopy (OM). The present coated carbon electrodes showed a different waveform compared to the voltage applied to the working electrode, depending on the scan rate and chemical composition of the modified electrodes.
Collapse
|
9
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
10
|
Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B, Singh R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. BIOSENSORS 2023; 13:85. [PMID: 36671920 PMCID: PMC9855722 DOI: 10.3390/bios13010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 05/17/2023]
Abstract
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader's benefit.
Collapse
Affiliation(s)
- Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
11
|
Electrochemical determination of glucose and H2O2 using Co(II), Ni(II), Cu(II) complexes of novel 2-(1,3-benzothiazol-2-ylamino)–N-(5-chloro-2-hydroxyphenyl)acetamide: Synthesis, structural characterization, antimicrobial, anticancer activity and docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|