1
|
Cao Q, Xing Y, Di L, Yang Z, Chen X, Xia Z, Ling J, Wang H. Photostable and high-brightness aggregation-induced emission of iridium luminogen achieving reliable and sensitive continuous luminescent quantification of molecular oxygen. Talanta 2024; 266:125059. [PMID: 37572477 DOI: 10.1016/j.talanta.2023.125059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Online continuous luminescent oxygen quantification requires both high-brightness luminescence and superior photobleaching resistance of luminogens to afford the requisite level of sensitivity and operational stability, which remains a challenge. Herein, a fluorine-free design strategy of incremental rotors for preparing iridium luminogens with excellent photobleaching resistance and high-brightness aggregation-induced emission (AIE) is presented. The incremental rotors gradually improve the rotational activity of substituents, efficaciously activating the AIE with synchronously improved aggregation-state luminescence efficiency, which is theoretically confirmed by the variations of dipole moments and experimentally verified by the luminescent lifetimes. Moreover, the introduction of triphenylamine significantly improves the photobleaching resistance of iridium luminogens. Subsequently, by optimizing the loading capacity of the iridium luminogen, the improvement of high-brightness AIE on the oxygen sensitivity of ethocel films is successfully observed. Thickness attenuation of ethocel films dramatically shortens the quenching/recovery response to 4.7 s. Importantly, owing to the exceptional photobleaching resistance of the iridium luminogen, distinguished photo-fatigue resistance with operational stability is exhibited by the ethocel film with no luminescence attenuation during 8000 s continuous oxygen quantification.
Collapse
Affiliation(s)
- Qingsong Cao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Yang Xing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Ling Di
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Zhanxu Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Xuebing Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Jianghua Ling
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Hongguo Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| |
Collapse
|
2
|
Abeywickrama CS. Large Stokes shift benzothiazolium cyanine dyes with improved intramolecular charge transfer (ICT) for cell imaging applications. Chem Commun (Camb) 2022; 58:9855-9869. [PMID: 35983738 DOI: 10.1039/d2cc03880c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular Charge Transfer (ICT) is a crucial photophysical phenomenon that can be used to improve the Stokes' shift in fluorescent dyes. The introduction of molecular asymmetry is a promising approach to mitigate significant drawbacks of the symmetric cyanine dyes due to their narrow Stokes' shifts (Δλ < 20 nm). In this feature article, we discuss recent progress towards improving the Stokes' shift (Δλ > 100 nm) in benzothiazolium-based fluorophore systems via efficient ICT and recent discoveries related to potentially useful live cell imaging applications of these asymmetric cyanine dyes. This article explores three interesting asymmetric benzothiazolium dye designs (D-π-A, π-A and D-π-2A) in detail while discussing their optical properties. The key advantage of these probes is the synthetic tunability of the probe's photophysical properties and cellular selectivity by simply modifying the donor (D) or the acceptor (A) group in the structure. These new asymmetric ICT fluorophore systems exhibit large Stokes' shifts, high biocompatibility, wash-free staining, red to NIR emission and facile excitation with commercially available laser wavelengths.
Collapse
Affiliation(s)
- Chathura S Abeywickrama
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|