1
|
Ye X, Li L, Liu H, Fang Y, Liu X. The First N,O-Chelated Diphenylboron-Based Fluorescent Probe for Peroxynitrite and Its Bioimaging Applications. BIOSENSORS 2024; 14:515. [PMID: 39589974 PMCID: PMC11592091 DOI: 10.3390/bios14110515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Peroxynitrite (ONOO-) is a reactive oxygen species (ROS) that takes part in the oxidation-reduction homeostasis while at the same time being responsible for activating numerous pathological pathways. Accordingly, monitoring the dynamic changes in ONOO- concentration has attracted a great deal of attention, undoubtedly prompting the development of appropriate fluorescent chemosensors. Herein, we developed a novel N,O-chelated diphenylboron-based fluorescent probe (DPB) for ONOO- featuring high selectivity, a quick response time (2.0 min), and a low detection limit (55 nM). DPB incorporates tetra-coordinated boron in the center of the fluorogenic core and a three-coordinated boron from the pinacolphenylboronate fragment, which acts as the recognition site for ONOO-. As confirmed by HR-MS and 1H NMR, the interaction of DPB with ONOO- led to an oxidative cleavage of pinacolphenylboronate moiety to produce strongly emissive derivative DPB-OH. The fluorescence enhancement is likely a result of a substantial deactivation of non-radiative decay due to the replacement of the bulky pinacolphenylboronate moiety with a compact hydroxyl group. Importantly, DPB probe exhibits negligible cytotoxicity and favorable biocompatibility allowing for an efficient tracking of ONOO- in living cells and zebrafish. Overall, the current study does not only represents the first N,O-chelated diphenylboron-based fluorescent probe for a specific analyte, but also serves as a guideline for designing more potent fluorescent probes based on the chemistry of boron chelates.
Collapse
Affiliation(s)
- Xiaoping Ye
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Longxuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuyu Fang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoya Liu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Naksen P, Chansaenpak K, Jungsuttiwong S, Intayot R, Jakmunee J, Pencharee S, Lieberzeit P, Jarujamrus P. Quantifying non-transferrin-bound iron (NTBI) in human plasma: incorporating BODIPY-pyridylhydrazone (BODIPY-PH) within a thin green film linked to a portable fluorescence-based device. Anal Bioanal Chem 2024; 416:5025-5035. [PMID: 39028344 DOI: 10.1007/s00216-024-05441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Free iron in human serum or non-transferrin-bound iron (NTBI) can generate free radicals and lead to oxidative damage. Moreover, it is highly toxic to various tissues and a vital biomarker related to the iron-loading status of thalassemia and Alzheimer's patients. In NTBI in healthy individuals, NTBI levels are typically less than 1 µM; current NTBI analysis usually requires advanced instrumentation and many-step sample pretreatment. To address this issue, we employed our invented BODIPY derivative, BODIPY-PH, as a fluorescence probe and trapped it onto the microcentrifuge tube lid using tapioca starch. The fluorescence intensity of BODIPY-PH increased with increasing NTBI concentration (turn-on). The developed portable reaction chamber facilitates rapid analysis (∼5 min) using small sample volumes (10 μL sample in a total volume of 600 μL). Under optimum conditions, using the sample-developed portable fluorescence device and fluorescence spectrometer, we achieved impressive limits of detection (LOD) of 0.003 and 0.0015 μM, respectively. Furthermore, the developed sensors show relatively high selectivity toward Fe3+ over other metal ions and biomolecules (i.e., Fe2+, Cr3+, Cu2+, and glucose). The sensor performance in serum samples of thalassemia patients exhibited no significant difference compared to the labeled value (obtained from standard methods). Overall, the developed fluorescence sensor is suitable for determining NTBI and offers high sensitivity, high selectivity, and a short incubation time (5 min). Moreover, the method requires a limited number of reagents, is simple to use, and uses low-cost equipment to determine NTBI in human serum samples.
Collapse
Affiliation(s)
- Puttaraksa Naksen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
- Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Siriporn Jungsuttiwong
- Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchumrap, Ubon Ratchathani, 34190, Thailand
| | - Ratchadaree Intayot
- Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchumrap, Ubon Ratchathani, 34190, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50000, Thailand
| | - Somkid Pencharee
- Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Waehringer Strasse 42, Vienna, 1090, Austria
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
- Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3‑14‑1 Hiyoshi, Kohoku‑ku, Yokohama, 223‑8522, Japan.
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Kumar B, Saraf P, Sarkar M, Kumar D. Efficient synthesis of α/β-isomeric oxadiazolyl and triazolopyridyl BODIPYs for sensing of Hg2+ ions and pH sensors. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|