1
|
Kaur G, Sharma S, Bhardwaj N, Nayak MK, Deep A. Simple fluorochromic detection of chromium with ascorbic acid functionalized luminescent Bio-MOF-1. NANOSCALE 2024; 16:12523-12533. [PMID: 38888214 DOI: 10.1039/d4nr00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The bioaccumulation of various heavy metals in the environment and agriculture is posing serious hazards to human health. Hexavalent chromium is one of the most encountered heavy metal pollutants. The routine monitoring of Cr(VI) via simple methods assumes great analytical significance in sectors like environmental safety, food quality, etc. This study reports a novel biocompatible and luminescent metal-organic framework (ascorbic acid functionalized Bio-MOF-1) based "Turn-on" nanoprobe for rapid and sensitive optical detection of Cr(VI). Bio-MOF-1 has been synthesized, functionalized with ascorbic acid (AA), and then comprehensively characterized for its key material properties. The presence of Cr(VI) results in the photoluminescence recovery of Bio-MOF-1/AA. Using the above approach, Cr(VI) is detected over a wide concentration range of 0.02 to 20 ng mL-1, with the limit of detection being 0.01 ng mL-1. The nanoprobe is capable of detecting Cr(VI) in real water as well as in some spiked food samples. Hence, the ascorbic acid functionalized Bio-MOF-1 nanoprobe is established as a potential on-field detection tool for Cr(VI).
Collapse
Affiliation(s)
- Gurjeet Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Saloni Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Neha Bhardwaj
- Institute of Nano Science and Technology (INST), Sector 81, S.A.S. Nagar (Mohali), Punjab-140306, India.
| | - Manoj K Nayak
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- Institute of Nano Science and Technology (INST), Sector 81, S.A.S. Nagar (Mohali), Punjab-140306, India.
| |
Collapse
|
2
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
3
|
Li H, Cai Q, Xue Y, Jie G. HOF-101-based dual-mode biosensor for photoelectrochemical/electrochemiluminescence detection and imaging of oxytetracycline. Biosens Bioelectron 2024; 245:115835. [PMID: 37979549 DOI: 10.1016/j.bios.2023.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
A unique hydrogen-bonded organic frameworks (HOF-101)-based photoelectrochemical (PEC) and electrochemiluminescence (ECL) dual-mode biosensor using polydopamine nanoparticles (PDAs) as quencher was constructed for ultrasensitive detection and imaging of oxytetracycline (OXY). In particular, HOF-101 was a superior ECL material and can be observed with the naked eye. Furthermore, it also had outstanding PEC signal, so HOF-101 was a new dual-signal material with excellent performance, thus it was explored to realize dual-mode detection. As the main component of natural melanin, PDAs not only had good biocompatibility, but also contained rich functional groups on the surface. Additionally, PDAs had excellent light absorption ability and poor conductivity, which made it the excellent photoquencher. In this work, PDAs were introduced on the surface of HOF-101 to quench its ECL and PEC signals by using the dual-aptamer sandwich method, achieving ultrasensitive detection of antibiotic OXY. Particularly for ECL detection, HOF-101 was firstly used to visually detect OXY. The detection range can reach 0.1 pM-100 nM, and the limit of detection (LOD) can reach 0.04 pM. This work showed a great contribution to the development of new ECL-PEC materials and ECL visualization analysis, which had outstanding application potential in the fields of food safety and biochemical analysis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yali Xue
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
4
|
Kolesnik SS, Bogachev NA, Kolesnikov IE, Orlov SN, Ryazantsev MN, González G, Skripkin MY, Mereshchenko AS. Microcrystalline Luminescent (Eu 1-xLn x) 2bdc 3·nH 2O (Ln = La, Gd, Lu) Antenna MOFs: Effect of Dopant Content on Structure, Particle Morphology, and Luminescent Properties. Molecules 2024; 29:532. [PMID: 38276610 PMCID: PMC10819915 DOI: 10.3390/molecules29020532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.
Collapse
Affiliation(s)
- Stefaniia S. Kolesnik
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; (S.S.K.); (N.A.B.); (I.E.K.); (S.N.O.); (M.N.R.); (M.Y.S.)
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; (S.S.K.); (N.A.B.); (I.E.K.); (S.N.O.); (M.N.R.); (M.Y.S.)
| | - Ilya E. Kolesnikov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; (S.S.K.); (N.A.B.); (I.E.K.); (S.N.O.); (M.N.R.); (M.Y.S.)
| | - Sergey N. Orlov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; (S.S.K.); (N.A.B.); (I.E.K.); (S.N.O.); (M.N.R.); (M.Y.S.)
- Institute of Nuclear Industry, Peter the Great St. Petersburg Polytechnic University (SPbSU), 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; (S.S.K.); (N.A.B.); (I.E.K.); (S.N.O.); (M.N.R.); (M.Y.S.)
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, ul. Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Gema González
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuqui 100119, Ecuador;
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; (S.S.K.); (N.A.B.); (I.E.K.); (S.N.O.); (M.N.R.); (M.Y.S.)
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; (S.S.K.); (N.A.B.); (I.E.K.); (S.N.O.); (M.N.R.); (M.Y.S.)
| |
Collapse
|
5
|
Zhu S, Wang Q, Wang X, Pan J, Yang T, Zhou X, Xiao H, You Y. A Coordination Polymer for the Fluorescence Turn-On Sensing of Saccharin, 2-Thiazolidinethione-4-carboxylic Acid, and Periodate. Inorg Chem 2023; 62:16589-16598. [PMID: 37757754 DOI: 10.1021/acs.inorgchem.3c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A luminescent 1D coordination polymer (CP) [Zn2L2(H2O)4]·H2O (1, H2L = 1-(4-carboxyphenyl)-1H-pyrazole-3-carboxylic acid) was prepared by a solvothermal method. 1 shows excellent fluorescence properties and has an obvious fluorescence "turn-on" phenomenon for saccharin (SAC), 2-thiazolidinethione-4-carboxylic acid (TTCA), and periodate (IO4-). Between 0 and 60 μM concentration range of SAC, the fluorescence enhancement efficiency (KEC) of 1 reaches 1.00 × 105 M-1 with the limit of detection (LOD) of 90 nM. 1 is the first CP-based sensing material for SAC detection. For TTCA detection, the KEC is 2.73 × 105 M-1 at the 25-80 μM concentration range, and the LOD is 33 nM, the lowest LOD among the sensors that detect TTCA at present. For IO4- ion detection, when the IO4- ion concentration ranges from 0 to 10 μM, the KEC is 2.34 × 105 M-1 and the LOD is as low as 39 nM. In order to better understand the sensing phenomenon, we also discuss in detail the sensing mechanisms for SAC, TTCA, and IO4- ions.
Collapse
Affiliation(s)
- Shan Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Qicheng Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaomei Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiajun Pan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Tao Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinhui Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hongping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yujian You
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
6
|
Liang C, Tan S, Shao L, Xue X, Liu J, Liu N, Zhang W, Shi Q. Sensitive Current Sensor Based on a Lanthanide Framework with Lewis Basic Bipyridyl Sites for Cu 2+ Detection. Inorg Chem 2023. [PMID: 37296395 DOI: 10.1021/acs.inorgchem.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new Yb-based three-dimensional metal-organic framework with free Lewis basic sites, [Yb2(ddbpdc)3(CH3OH)2] (referred to as ACBP-6), from YbCl3 and (6R,8R)-6,8-dimethyl-7,8-dihydro-6H-[1,5]dioxonino[7,6-b:8,9-b']dipyridine-3,11-dicarboxylic acid (H2ddbpdc) was synthesized by a conventional solvothermal method. Two Yb3+ are connected by three carboxyl groups to form the [Yb2(CO2)5] binuclear unit, which is further bridged by two carboxyl moieties to produce a tetranuclear secondary building unit. With further ligation of the ligand ddbpdc2-, a 3-D MOF with helical channels is constructed. In the MOF, Yb3+ only coordinates with O atoms, leaving the bipyridyl N atoms of ddbpdc2- unoccupied. The unsaturated Lewis basic sites make this framework possible to coordinate with other metal ions. After growing the ACBP-6 in situ into a glass micropipette, a novel current sensor is formed. This sensor shows high selectivity and a high signal-to-noise ratio toward Cu2+ detection with a detection limit of 1 μM, due to the stronger coordination ability between the Cu2+ and the bipyridyl N atoms.
Collapse
Affiliation(s)
- Chenglong Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Shiyi Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Lixiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xinxin Xue
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Jiahao Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Weibing Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| |
Collapse
|
7
|
Li S, Zhang P, Zhao X, Liu Y. Green/red emission modulation via Tb/Eu co-doping in MOF host for the ratiometric sensing of peroxyacetic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|