1
|
Xi Q, Wang SY, Deng XB, Zhang CH. Catalytic Hairpin Assembly-Based Self-Ratiometric Gel Electrophoresis Detection Platform for Reliable Nucleic Acid Analysis. BIOSENSORS 2024; 14:232. [PMID: 38785706 PMCID: PMC11118829 DOI: 10.3390/bios14050232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
The development of gel electrophoresis-based biodetection assays for point-of-care analysis are highly demanding. In this work, we proposed a ratiometric gel electrophoresis-based biosensing platform by employing catalytic hairpin assembly (CHA) process functions as both the signal output and the signal amplification module. Two types of nucleic acids, DNA and miRNA, are chosen for demonstration. The proposed strategy indeed provides a new paradigm for the design of a portable detection platform and may hold great potential for sensitive diagnoses.
Collapse
Affiliation(s)
- Qiang Xi
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Si-Yi Wang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Xiao-Bing Deng
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Chong-Hua Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, Imaging, and Therapeutic Strategies Endowing by Conjugate Polymers for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310032. [PMID: 38316396 DOI: 10.1002/adma.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Conjugated polymers (CPs) have promising applications in biomedical fields, such as disease monitoring, real-time imaging diagnosis, and disease treatment. As a promising luminescent material with tunable emission, high brightness and excellent stability, CPs are widely used as fluorescent probes in biological detection and imaging. Rational molecular design and structural optimization have broadened absorption/emission range of CPs, which are more conductive for disease diagnosis and precision therapy. This review provides a comprehensive overview of recent advances in the application of CPs, aiming to elucidate their structural and functional relationships. The fluorescence properties of CPs and the mechanism of detection signal amplification are first discussed, followed by an elucidation of their emerging applications in biological detection. Subsequently, CPs-based imaging systems and therapeutic strategies are illustrated systematically. Finally, recent advancements in utilizing CPs as electroactive materials for bioelectronic devices are also investigated. Moreover, the challenges and outlooks of CPs for precision medicine are discussed. Through this systematic review, it is hoped to highlight the frontier progress of CPs and promote new breakthroughs in fundamental research and clinical transformation.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Ci Q, He Y, Chen J. Novel Anti-CRISPR-Assisted CRISPR Biosensor for Exclusive Detection of Single-Stranded DNA (ssDNA). ACS Sens 2024; 9:1162-1167. [PMID: 38442486 PMCID: PMC10964243 DOI: 10.1021/acssensors.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Nucleic acid analysis plays an important role in disease diagnosis and treatment. The discovery of CRISPR technology has provided novel and versatile approaches to the detection of nucleic acids. However, the most widely used CRISPR-Cas12a detection platforms lack the capability to distinguish single-stranded DNA (ssDNA) from double-stranded DNA (dsDNA). To overcome this limitation, we first employed an anti-CRISPR protein (AcrVA1) to develop a novel CRISPR biosensor to detect ssDNA exclusively. In this sensing strategy, AcrVA1 cut CRISPR guide RNA (crRNA) to inhibit the cleavage activity of the CRISPR-Cas12a system. Only ssDNA has the ability to recruit the cleaved crRNA fragment to recover the detection ability of the CRISPR-Cas12 biosensor, but dsDNA cannot accomplish this. By measuring the recovered cleavage activity of the CRISPR-Cas12a biosensor, our developed AcrVA1-assisted CRISPR biosensor is capable of distinguishing ssDNA from dsDNA, providing a simple and reliable method for the detection of ssDNA. Furthermore, we demonstrated our developed AcrVA1-assisted CRISPR biosensor to monitor the enzymatic activity of helicase and screen its inhibitors.
Collapse
Affiliation(s)
- Qiaoqiao Ci
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Department
of Bioengineering, University of California,
Riverside, Riverside, California 92521, United States
| |
Collapse
|
4
|
Pataer P, Gao K, Zhang P, Li Z. Ultrasensitive and visual detection of genetically modified crops using two primers-induced cascade exponential amplification assay. Talanta 2024; 268:125282. [PMID: 37913599 DOI: 10.1016/j.talanta.2023.125282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023]
Abstract
The increased global cultivation area of genetically modified (GM) crops has caused severe controversies over potential health and environmental risks worldwide. There is an urgent need to verify even trace amount of a particular GM material in products. Herein, a two primers-induced cascade exponential amplification reaction combined with cationic conjugated polymers (CCPs)-based visual detection method is developed for rapid and ultrasensitive detection of GM crops. This method only uses two primers to specifically recognize the four regions of the target gene, which is easier for primer design and probably more suitable for the detection of shorter targets. By integrating the two exponential amplification reactions, as low as 5 pg genomic DNA from GM maize can be accurately detected, which is more sensitive than the single amplification-based methods. Taking advantage of the efficient fluorescence resonance energy transfer (FRET) between CCPs and the commercial fluorescent dye SYBR Green I (SG), our method can differentiate as low as 0.01 % GM maize from a large amount of non-GM maize, which is the most accurate method so far. By changing the two primers according to target gene, our method can be modified to the detection of any other GM materials, indicating that our method is promising to be applied in other GM materials-related testing and screening system.
Collapse
Affiliation(s)
- Parezhati Pataer
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Kejian Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Pengbo Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
5
|
Elgiddawy N, Elnagar N, Korri-Youssoufi H, Yassar A. π-Conjugated Polymer Nanoparticles from Design, Synthesis to Biomedical Applications: Sensing, Imaging, and Therapy. Microorganisms 2023; 11:2006. [PMID: 37630566 PMCID: PMC10459335 DOI: 10.3390/microorganisms11082006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
In the past decade, π-conjugated polymer nanoparticles (CPNs) have been considered as promising nanomaterials for biomedical applications, and are widely used as probe materials for bioimaging and drug delivery. Due to their distinctive photophysical and physicochemical characteristics, good compatibility, and ease of functionalization, CPNs are gaining popularity and being used in more and more cutting-edge biomedical sectors. Common synthetic techniques can be used to synthesize CPNs with adjustable particle size and dispersion. More importantly, the recent development of CPNs for sensing and imaging applications has rendered them as a promising device for use in healthcare. This review provides a synopsis of the preparation and functionalization of CPNs and summarizes the recent advancements of CPNs for biomedical applications. In particular, we discuss their major role in bioimaging, therapeutics, fluorescence, and electrochemical sensing. As a conclusion, we highlight the challenges and future perspectives of biomedical applications of CPNs.
Collapse
Affiliation(s)
- Nada Elgiddawy
- CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, ECBB, 91400 Orsay, France
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt
| | - Noha Elnagar
- CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, ECBB, 91400 Orsay, France
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt
| | - Hafsa Korri-Youssoufi
- CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, ECBB, 91400 Orsay, France
| | - Abderrahim Yassar
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France;
| |
Collapse
|
6
|
Zhang H, Li AZ, Liu J. Surfactant-Assisted Label-Free Fluorescent Aptamer Biosensors and Binding Assays. BIOSENSORS 2023; 13:bios13040434. [PMID: 37185509 PMCID: PMC10135756 DOI: 10.3390/bios13040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Using DNA staining dyes such as SYBR Green I (SGI) and thioflavin T (ThT) to perform label-free detection of aptamer binding has been performed for a long time for both binding assays and biosensor development. Since these dyes are cationic, they can also adsorb to the wall of reaction vessels leading to unstable signals and even false interpretations of the results. In this work, the stability of the signal was first evaluated using ThT and the classic adenosine aptamer. In a polystyrene microplate, a drop in fluorescence was observed even when non-binding targets or water were added, whereas a more stable signal was achieved in a quartz cuvette. Equilibrating the system can also improve signal stability. In addition, a few polymers and surfactants were also screened, and 0.01% Triton X-100 was found to have the best protection effect against fluorescence signal decrease due to dye adsorption. Three aptamers for Hg2+, adenosine, and cortisol were tested for their sensitivity and signal stability in the absence and presence of Triton X-100. In each case, the sensitivity was similar, whereas the signal stability was better for the surfactant. This study indicates that careful control experiments need to be designed to ensure reliable results and that the reliability can be improved by using Triton X-100 and a long equilibration time.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Albert Zehan Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|