1
|
Tian ZF, Hu RY, Wang Z, Wang YJ, Li W. Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review. Arch Toxicol 2025; 99:541-561. [PMID: 39729114 DOI: 10.1007/s00204-024-03941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C. A. Meyer, is a precious Traditional Chinese Medicines with high medicinal value and is known as the "king of all herbs", and its active ingredient, ginsenoside Rg3 is a rare saponin and a new class of drug, one of the most thoroughly and extensively studied in a large number of studies. Ginsenoside Rg3 is an active ingredient extracted from ginseng that possesses a variety of biological activities, including anti-inflammatory, antioxidant, and anti-fibrotic effects. Several studies have suggested that ginsenoside Rg3 may help reduce hepatic inflammation and oxidative stress, thereby slowing the progression of liver fibrosis. Ginsenoside Rg3 may have some therapeutic effects on liver fibrosis, and the underlying molecular mechanisms behind these effects are attributed to cellular autophagy, apoptosis, and anti-inflammation, as well as the modulation of antioxidant activity and multiple signaling pathways. The molecular mechanisms behind the inhibitory effect of ginsenoside Rg3 on hepatic fibrosis are reviewed, with a view to providing reference for related studies.
Collapse
Affiliation(s)
- Zhao-Feng Tian
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Ya-Jun Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Tang E, Ma Z, Zhang P, Chen Y, Zhou Y, Wu J, Yang T, Lian D, Wu X. Preparation, characterization, and anticancer effect of Capsaicin-functionalized selenium nanoparticles. Front Nutr 2024; 11:1515657. [PMID: 39758309 PMCID: PMC11695334 DOI: 10.3389/fnut.2024.1515657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Selenium nanoparticles (SeNPs) are recently emerging as promising anticancer agents because of their high bioavailability, low toxicity and remarkable anticancer activities. However, the application of SeNPs in anticancer has been limited due to instability. Herein, Capsaicin (Cap), a natural active compound found in chili peppers with favorable anticancer activity, was modified with SeNPs to prepare Cap-decorated SeNPs (Cap@SeNPs), and the antiproliferative effect and mechanism of Cap@SeNPs in HepG2 were investigated. Methods Cap@SeNPs were prepared through a redox method and characterized using ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Subsequently, the inhibitory rate of Cap@SeNPs on HepG2 cells was determined by the MTT assay. Finally, the antiproliferative mechanism of Cap@SeNPs was explored through analysis of cell cycle, cell viability, reactive oxygen species levels, mitochondrial membrane potential, nuclear morphology, and caspase activity. Results Our results revealed that stable and well-dispersed Cap@SeNPs were successfully fabricated, and the optimum mass ratio of sodium selenite to Cap was 1:2. In addition, Cap@SeNPs showed significant antiproliferative effects on HepG2 cells compared with naked SeNPs. Furthermore, Cap@SeNPs inhibited the proliferation of HepG2 cells by elevating total ROS levels, causing nuclear condensation, affecting mitochondrial membrane potential, which in turn influences caspase protease activity and induces apoptosis. Conclusion This study developed an innovative approach to enhance the value of Cap, demonstrating that Cap@SeNPs hold promise as potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Enhui Tang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ziqing Ma
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Peiting Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Chen
- School of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Yiman Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Jieying Wu
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Tingting Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Duanya Lian
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Xinlan Wu
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Chen H, Yang L, Zhu W, Tang P, Xing X, Zhang W, Zhong L. Raman signal optimization based on residual network adaptive focusing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123949. [PMID: 38277779 DOI: 10.1016/j.saa.2024.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Due to its high sensitivity and specificity, Micro-Raman spectroscopy has emerged as a vital technique for molecular recognition and identification. As a weakly scattered signal, ensuring the accurate focus of the sample is essential for acquiring high quality Raman spectral signal and its analysis, especially in some complex microenvironments such as intracellular settings. Traditional autofocus methods are often time consuming or necessitate additional hardware, limiting real-time sample observation and device compatibility. Here, we propose an adaptive focusing method based on residual network to realize rapid and accurate focusing on Micro-Raman measurements. Using only a bright field image of the sample acquired on any image plane, we can predict the defocus distance with a residual network trained by Resnet50, in which the focus position is determined by combining the gradient and discrete cosine transform. Further, detailed regional division of the bright field map used for characterizing the height variation of actual sample surface is performed. As a result, a focus prediction map with 1μm accuracy is obtained from a bright field image in 120 ms. Based on this method, we successfully realize Raman signal optimization and the necessary correction of spectral information. This adaptive focusing method based on residual network is beneficial to further enhance the sensitivity and accuracy of Micro-Raman spectroscopy technology, which is of great significance in promoting the wide application of Raman spectroscopy.
Collapse
Affiliation(s)
- Haozhao Chen
- Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Liwei Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Weile Zhu
- Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Tang
- Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyue Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Weina Zhang
- Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyun Zhong
- Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Li M, Pan Z, He Q, Xiao J, Chen B, Wang F, Kang P, Luo H, Li J, Zeng J, Li S, Yang J, Wang H, Zhou C. Arctiin attenuates iron overload‑induced osteoporosis by regulating the PI3K/Akt pathway. Int J Mol Med 2023; 52:108. [PMID: 37800616 PMCID: PMC10558215 DOI: 10.3892/ijmm.2023.5311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Iron overload is a prevalent pathological factor observed among elderly individuals and those with specific hematological disorders, and is frequently associated with an elevated incidence of osteoporosis. Although arctiin (ARC) has been shown to possess antioxidant properties and the ability to mitigate bone degeneration, its mechanism of action in the treatment of iron overload‑induced osteoporosis (IOOP) remains incompletely understood. To explore the potential molecular mechanisms underlying the effects of ARC, the MC3T3‑E1 cell osteoblast cell line was used. Cell Counting Kit was used to assess MC3T3‑E1 cell viability. Alkaline phosphatase staining and alizarin red staining were assessed for osteogenic differentiation. Calcein AM assay was used to assess intracellular iron concentration. In addition, intracellular levels of reactive oxygen species (ROS), lipid peroxides, mitochondrial ROS, apoptosis rate and mitochondrial membrane potential changes in MC3T3‑E1 cells were examined using flow cytometry and corresponding fluorescent dyes. The relationship between ARC and the PI3K/Akt pathway was then explored by western blotting and immunofluorescence. In addition, the effects of ARC on IOOP was verified using an iron overload mouse model. Immunohistochemistry was performed to evaluate expression of osteogenesis‑related proteins. Micro-CT and H&E were used to analyze bone microstructural parameters and histomorphometric indices in the bone tissue. Notably, ARC treatment reversed the decreased viability and increased apoptosis in MC3T3‑E1 cells originally induced by ferric ammonium citrate, whilst promoting the formation of mineralized bone nodules in MC3T3‑E1 cells. Furthermore, iron overload induced a decrease in the mitochondrial membrane potential, augmented lipid peroxidation and increased the accumulation of ROS in MC3T3‑E1 cells. ARC not only positively regulated the anti‑apoptotic and osteogenic capabilities of these cells via modulation of the PI3K/Akt pathway, but also exhibited antioxidant properties by reducing oxidative stress. In vivo experiments confirmed that ARC improved bone microarchitecture and biochemical parameters in a mouse model of iron overload. In conclusion, ARC exhibits potential as a therapeutic agent for IOOP by modulating the PI3K/Akt pathway, and via its anti‑apoptotic, antioxidant and osteogenic properties.
Collapse
Affiliation(s)
- Miao Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhaofeng Pan
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qi He
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fanchen Wang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Pan Kang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Haoran Luo
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jianliang Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiaxu Zeng
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Junzheng Yang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Chi Zhou
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, Guangdong 525022, P.R. China
| |
Collapse
|