1
|
Sarac B, Yücer S, Ciftci F. MXenes in microbiology and virology: from pathogen detection to antimicrobial applications. NANOSCALE 2025. [PMID: 40135595 DOI: 10.1039/d5nr00477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
MXenes, a rapidly emerging class of two-dimensional materials, have demonstrated exceptional versatility and functionality across various domains, including microbiology and virology. Recent advancements in MXene synthesis techniques, encompassing both top-down and bottom-up approaches, have expanded their potential applications in pathogen detection, antimicrobial treatments, and biomedical platforms. This review highlights the unique physicochemical properties of MXenes, including their large surface area, tunable surface chemistry, and high biocompatibility, which contribute to their antimicrobial efficacy against bacteria, fungi, and viruses, such as SARS-CoV-2. The antibacterial mechanisms of MXenes, including membrane disruption, reactive oxygen species (ROS) generation, and photothermal inactivation, are discussed alongside hybridization strategies that enhance their bioactivity. Additionally, the challenges and future prospects of MXenes in developing advanced antimicrobial coatings, diagnostic tools, and therapeutic systems are outlined. By addressing current limitations and exploring innovative solutions, this study underscores the transformative potential of MXenes in microbiology, virology, and biomedical applications.
Collapse
Affiliation(s)
- Begüm Sarac
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Seydanur Yücer
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Fatih Ciftci
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
| |
Collapse
|
2
|
Kao K, Alocilja EC. Parallel Detection of the Unamplified Carbapenem Resistance Genes blaNDM-1 and blaOXA-1 Using a Plasmonic Nano-Biosensor with a Field-Portable DNA Extraction Method. BIOSENSORS 2025; 15:112. [PMID: 39997014 PMCID: PMC11853256 DOI: 10.3390/bios15020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in agricultural and clinical settings. The challenge is exacerbated by the lack of rapid surveillance for resistant bacteria in clinical, environmental, and food supply settings. The increasing resistance to carbapenems, an important sub-class of beta-lactam antibiotics, is a major concern in the healthcare community. Carbapenem resistance (CR) has been found in the environment and food supply chain, where it has the potential to spread to pathogens, animals, and humans through direct or indirect contact. Rapid detection for preventative and control measures should be developed. This study utilized a gold nanoparticle-based plasmonic biosensor for the parallel detection of the CR genes blaNDM-1 and blaOXA-1. To explore the field portability, DNA was extracted using two methods: a commercial extraction kit and a boiling method. The results were compared between the two methods using a spectrophotometer and a cellphone application for RGB values to quantify the visual results. The results showed that the boiling method of extraction was more effective than extraction with a commercial kit for this analysis. The parallel detection of unamplified genes extracted via the boiling method is novel. When combined with other portable testing equipment, the approach has the potential to be an inexpensive, rapid, and simple on-site CR gene detection protocol.
Collapse
Affiliation(s)
- Kaily Kao
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C. Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Łaska G, Matejczyk M, Dauksza U. The expression of different gene constructs in Escherichia coli SM lux biosensor after exposure to drugs. Sci Rep 2024; 14:31899. [PMID: 39738597 PMCID: PMC11685396 DOI: 10.1038/s41598-024-83190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The research used bacterial biosensors containing bacterial luciferase genes to monitor changes in the environment in real-time. In this work to express four different gene constructs: recA:luxCDABE, soxS:luxCDABE, micF:luxCDABE, and rpoB:luxCDABE in Escherichia coli SM lux biosensor after exposure to three different antibiotics (nalidixic acid, ampicillin, kanamycin) and diclofenac was determined. It was found that incubation of the E. coli SM strain in various concentrations of analytes results in differentiation in gene expression at each of the tested concentrations (from 0.625 to 10 µg/mL) and during all three measurements, in "time 0", after 30 min. and after 1 h. The measurable signal is created as a result of the action of reporter genes (bacterial luciferase genes luxCDABE), present in genetically modified bacterial cells. E. coli luminescent bioreporters in the stationary phase were used. In the analysis of the induction of the promoter (regulatory proteins) to the control (0 µg/ml), the highest biosensor response was shown in the case of kanamycin concentration equal to 0.625 µg/mL after 1-h incubation. The highest increase express gene construct was found for micF:luxCDABE in E. coli SM343 lux biosensor, where the micF promoter induction relative to the control at a concentration of 0.625 µg/mL is 73.9%.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, 15-351, Białystok, Poland.
| | - Marzena Matejczyk
- Department of Chemistry, Biology and Biotechnology, of Natural Products Chemistry, Bialystok University of Technology, 15-351, Białystok, Poland
| | - Urszula Dauksza
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, 15-351, Białystok, Poland
| |
Collapse
|
4
|
Sfragano PS, Reynoso EC, Rojas-Ruíz NE, Laschi S, Rossi G, Buchinger M, Torres E, Palchetti I. A microfluidic card-based electrochemical assay for the detection of sulfonamide resistance genes. Talanta 2024; 271:125718. [PMID: 38301374 DOI: 10.1016/j.talanta.2024.125718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Most electroanalytical detection schemes for DNA markers require considerable time and effort from expert personnel to thoroughly follow the analysis and obtain reliable outcomes. This work aims to present an electrochemical assay performed inside a small card-based platform powered by microfluidic manipulation, requiring minimal human intervention and consumables. The assay couples a sample/signal dual amplification and DNA-modified magnetic particles for the detection of DNA amplification products. Particularly, the sul1 and sul4 genes involved in the resistance against sulfonamide antibiotics were analyzed. As recognized by the World Health Organization, antimicrobial resistance threatens global public health by hampering medication efficacy against infections. Consequently, analytical methods for the determination of such genes in environmental and clinical matrices are imperative. Herein, the resistance genes were extracted from E. coli cells and amplified using an enzyme-assisted isothermal amplification at 37 °C. The amplification products were analyzed in an easily-produced, low-cost, card-based set-up implementing a microfluidic system, demanding limited manual work and small sample volumes. The target amplicon was thus captured and isolated using versatile DNA-modified magnetic beads injected into the microchannel and exposed to the various reagents in a continuously controlled microfluidic flow. After the optimization of the efficiency of each phase of the assay, the platform achieved limits of detections of 44.2 pmol L-1 for sul1 and 48.5 pmol L-1 for sul4, and was able to detect down to ≥500-fold diluted amplification products of sul1 extracted from E. coli living cells in around 1 h, thus enabling numerous end-point analyses with a single amplification reaction.
Collapse
Affiliation(s)
| | - Eduardo Canek Reynoso
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy; Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico
| | - Norma Elena Rojas-Ruíz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72000, Mexico
| | - Serena Laschi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Giulia Rossi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Martin Buchinger
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico.
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
6
|
Er Zeybekler S. Polydopamine-coated hexagonal boron nitride-based electrochemical immunosensing of T-Tau as a marker of Alzheimer's disease. Bioelectrochemistry 2023; 154:108552. [PMID: 37651881 DOI: 10.1016/j.bioelechem.2023.108552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Alzheimer's disease (AD) is a complex pathological process that is one of the leading causes of dementia globally. The demand for diagnostic tools that are minimally invasive, timely, and accurate is on the rise. Total tau (T-Tau) protein in blood serum is a promising biomarker for predicting early-stage AD diagnosis. In this study, the hexagonal boron nitride (HBN) based immunosensor platform was developed to detect T-Tau in artificial blood serum. After the exfoliation of HBN, its surface was coated with polydopamine (PDA) in alkaline conditions. The Anti-T-Tau was immobilized on a hydrophilic nanocomposite surface using PDA's reactive catechol and quinone groups, eliminating the need for extra crosslinkers. The working electrode surface of the screen-printed carbon electrode (SPCE) was coated with HBN-PDA nanocomposite using the drop-casting method. The biofunctional surface was created by directly immobilizing Anti-T-Tau on the HBN-PDA nanocomposite-modified SPCE. The analytical performance of the HBN-PDA/Anti-T-Tau/T-Tau immunosensor in the presence of T-Tau isoforms was determined through electrochemical measurements. The linear detection range was 1-30 pg/mL with a detection limit of 0.42 pg/mL for T-Tau, which is suitable for detecting T-Tau in the blood serum.
Collapse
Affiliation(s)
- Simge Er Zeybekler
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova-Izmir, Turkey
| |
Collapse
|