1
|
Jiang B, Yang Y, Zhao R, Chen D, Wang Y, Liu J, Long F, Chen R, Hao R. A multifunctional evanescent wave biosensor for the universal assay of SARS-CoV-2 variants and affinity analysis of coronavirus spike protein-hACE2 interactions. Biosens Bioelectron 2024; 260:116426. [PMID: 38815461 DOI: 10.1016/j.bios.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
The conventional detection model of passive adaptation to pathogen mutations, i.e., developing assays using corresponding antibodies or nucleic acid probes, is difficult to address frequent outbreaks of emerging infectious diseases. In particular, adaptive mutations observed in coronaviruses, which increase the affinity of the spike protein with the human cellular receptor hACE2, play pivotal roles in the transmission and immune evasion of coronaviruses. Herein, we developed a multifunctional optical fiber evanescent wave biosensor for the universal assay of coronavirus and affinity analysis of the spike protein interacting with hACE2, namely, My-SPACE. By competitively binding with Cy5.5-hACE2 between coronavirus spike proteins in mobile buffer and that modified on optical fibers from the SARS-CoV-2 wild type, My-SPACE could automatically detect SARS-CoV-2 and its variants within 10 min. My-SPACE demonstrated greater sensitivity and faster results than ELISA for SARS-CoV-2 variants, achieving 100% specificity and 94.10% sensitivity in detecting the Omicron variant in 18 clinical samples. Moreover, the interaction between hACE2 and the coronavirus spike protein was accurately characterized across SARS-CoV-2 mutants, SARS-CoV and hCoV-NL63. The accuracy of the affinity determined by My-SPACE was verified by SPR. This approach enables preliminary assessment of the transmissibility and hazards of emerging coronaviruses. The sensor fibers of My-SPACE can be reused more than 40 times, and the device is compact and easy to use; moreover, it is available as a rapid and cost-effective on-site detection tool adapted to coronavirus variability and as an effective assessment platform for early warning of coronavirus transmission risk.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Dan Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yule Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Junwen Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, China.
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Han X, Zhang Y, Zhang Y, Song Q, Hasi W, Lin S, Wang F. A temperature compensated fiber probe for highly sensitive detection in virus gene biosensing. Anal Chim Acta 2024; 1316:342820. [PMID: 38969422 DOI: 10.1016/j.aca.2024.342820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
This research presents an innovative reflective fiber optic probe structure, mutinously designed to detect H7N9 avian influenza virus gene precisely. This innovative structure skillfully combines multimode fiber (MMF) with a thin-diameter seven-core photonic crystal fiber (SCF-PCF), forming a semi-open Fabry-Pérot (FPI) cavity. This structure has demonstrated exceptional sensitivity in light intensity-refractive index (RI) response through rigorous theoretical and experimental validation. The development of a quasi-distributed parallel sensor array, which provides temperature compensation during measurements, has achieved a remarkable RI response sensitivity of up to 532.7 dB/RIU. The probe-type fiber optic sensitive unit, expertly functionalized with streptavidin, offers high specificity in detecting H7N9 avian influenza virus gene, with an impressively low detection limit of 10-2 pM. The development of this biosensor marks a significant development in biological detection, offering a practical engineering solution for achieving high sensitivity and specificity in light-intensity-modulated biosensing. Its potential for wide-ranging applications in various fields is now well-established.
Collapse
Affiliation(s)
- Xiaopeng Han
- The National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, 150080, China
| | - Yu Zhang
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin, 150080, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Yundong Zhang
- The National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, 150080, China; College of Aeronautics and Astronautics, Harbin Institute of Technology, Harbin, 150080, China.
| | - Qinghao Song
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin, 150080, China.
| | - Wuliji Hasi
- The National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, 150080, China; College of Aeronautics and Astronautics, Harbin Institute of Technology, Harbin, 150080, China
| | - Siyu Lin
- The National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, 150080, China
| | - Fan Wang
- The National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
3
|
Hu X, Liu J, Gong X, Xu J, Yao J, Li K, Liu H. Photochromic biomaterials: Synthesis and fluorescence properties of spiroxanthenes-grafted alginate derivatives. Carbohydr Polym 2024; 327:121664. [PMID: 38171681 DOI: 10.1016/j.carbpol.2023.121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Herein, we reported a general and green synthetic strategy for photochromic functional alginate derivatives grafting with isoindolinone spiroxanthenes. Under mild condition, diverse 2-aminoalkyl isoindolinone spiroxanthene derivatives have been prepared from organic photochromic isobenzofuranone spiroxanthenes (including rhodamine B, rhodamine 6G and fluorescein), and grafted on alginate chains through amidation reaction using diamine as a linkage with water as a green solvent at room temperature. The photochromic properties of the fluorophores-modified polymers and the effect of pH value have been explored. Under acid conditions, the spiroisoindolinone rings of alginate derivatives are opened resulting in showing absorption bands and fluorescence with orange to green emission, while the alginate derivatives turned to colourless under basic conditions which is reversibly. In addition to biodegradability and biocompatibility, the polymers exhibit good film-forming properties simultaneously. The films and fibers produced from the alginate derivatives also project good fluorescence properties.
Collapse
Affiliation(s)
- Xiaoxia Hu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Xiaole Gong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jiuyong Yao
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Kai Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Honglei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China.
| |
Collapse
|
4
|
Kim HM, Kim HJ, Park JH, Lee SK. Bimetallic nanodisk-based fiber-optic plasmonic nanoprobe for gas detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123575. [PMID: 39492381 DOI: 10.1016/j.saa.2023.123575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
In this study, gold-palladium bimetallic nanodisks were patterned on optical fibers via nanosphere lithography and chemical growth. The conditions related to the density of the structures, concentration of the growth solution, and growth time were modified. The structural features of nanodisks with a large surface area and enhancement of plasmonic efficiency owing to the palladium shell resulted in a high refractive index sensitivity. Additionally, based on palladium's sensitivity to hydrogen, hydrogen sensing was performed at various concentrations with a detection limit of 0.125 % and signal-to-noise ratio of 24.2 dB. The response time and hysteresis showed a good performance relative to those of other hydrogen sensors. The high throughput of the nanosphere lithography and simple seed-mediated growth make this system a cost-effective fiber-optic plasmonic nanoprobe. Based on these investigations, the optical fiber-based plasmonic nanoprobe can be actively applied to detect dangerous environments using remote sensing for safety management in the clean energy era.
Collapse
Affiliation(s)
- Hyeong-Min Kim
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Hyo-Jun Kim
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Jae-Hyoung Park
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Seung-Ki Lee
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea.
| |
Collapse
|
5
|
Zhou J, Li H, Li J, Liu X, Zhao J, Wang N, Wang Y, Zhang Y, Zhang X, Xin Y, Li X, Wang Z, Shao N, Lou X. Selection of regioselective DNA aptamer for detection of homocysteine in nondeproteinized human plasma. Biosens Bioelectron 2023; 237:115528. [PMID: 37480786 DOI: 10.1016/j.bios.2023.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Small molecule-binding aptamers often suffer from high cross reactivity to structure analogues in biological samples, limiting their value for clinical diagnosis. Herein, we present a method to overcome this issue, by performing binding-inhibited organic reaction-based regioselective selection of aptamers against homocysteine (Hcy), which is a marker for diagnosing many disorders including stroke and Alzheimer's. This approach has led to isolation of a DNA aptamer that binds to the alkane thiol chain of Hcy with exceptional specificity against cysteine. It also binds with oxidized Hcy at weaker affinity. Using this new aptamer, we produced a reusable fluorescent optical fiber aptasensor for direct and validated detection of both free and total Hcy in nondeproteinized patient plasma in the diagnostic concentration range. The binding site-specific aptamer selection and optical-fiber-sensing strategy can expand the practical utility of aptamers in clinical diagnosis.
Collapse
Affiliation(s)
- Jianshuo Zhou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jinming Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Xuemei Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiaxing Zhao
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Nan Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yuxiao Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yu Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Xin Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yucen Xin
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Xiaoqi Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Zheng Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China.
| |
Collapse
|