1
|
Li W, Yin Y, Zhou H, Fan Y, Yang Y, Gao Q, Li P, Gao G, Li J. Recent Advances in Electrospinning Techniques for Precise Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0101. [PMID: 38778878 PMCID: PMC11109596 DOI: 10.34133/cbsystems.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Yin
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Huaijuan Zhou
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingting Yang
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiqi Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine,
Rutgers University, Piscataway, NJ, USA
| | - Ge Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Jinhua Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| |
Collapse
|
2
|
Wang Y, Wu H, Xiao A, Zhu J, Qiu J, Yang K, Liu Q, Hao S, Hui L, Zhou X, Hou Q, Su H, Meng Z, Chang L. Combined Amniotic Membrane and Self-Powered Electrical Stimulator Bioelectronic Dress Promotes Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15809-15818. [PMID: 38515315 DOI: 10.1021/acsami.3c18547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Human amniotic membranes (hAMs) are widely used as wound management biomaterials, especially as grafts for corneal reconstruction due to the structure of the extracellular matrix and excellent biological properties. However, their fragile nature and rapid degradation rate hinder widespread clinical use. In this work, we engineered a novel self-powered electronic dress (E-dress), combining the beneficial properties of an amniotic membrane and a flexible electrical electrode to enhance wound healing. The E-dress displayed a sustained discharge capacity, leading to increased epidermal growth factor (EGF) release from amniotic mesenchymal interstitial stem cells. Live/dead staining, CCK-8, and scratch-wound-closure assays were performed in vitro. Compared with amniotic membrane treatment alone, the E-dress promoted cell proliferation and migration of mouse fibroblast cells and lower cytotoxicity. In a mouse full-skin defect model, the E-dress achieved significantly accelerated wound closure. Histological analysis revealed that E-dress treatment promoted epithelialization and neovascularization in mouse skin. The E-dress exhibited a desirable flexibility that aligned with tissue organization and displayed maximum bioactivity within a short period to overcome rapid degradation, implying great potential for clinical applications.
Collapse
Affiliation(s)
- Yupei Wang
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jing Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jie Qiu
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qing Liu
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Shengju Hao
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Ling Hui
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Xin Zhou
- Department of Integrative Medical Biology, Umeå University, Umeå 90337, Sweden
| | - Qinzheng Hou
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Haixiang Su
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Zhaoyan Meng
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Vogt B. Catheter-Free Urodynamics Testing: Current Insights and Clinical Potential. Res Rep Urol 2024; 16:1-17. [PMID: 38192632 PMCID: PMC10771720 DOI: 10.2147/rru.s387757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Lower urinary tract dysfunction not only interferes with the health-related quality of life of patients but may also lead to acute kidney injury and infections. To assess the bladder, urodynamic studies (UDS) have been implemented but the use of catheters leads to discomfort for the patient. Catheter-free long-term UDS would be useful and a potential solution could be ambulatory wireless devices that communicate via telemetry. Such sensors can detect pressure or volume. Numerous types of potential catheter-free sensors have been proposed for bladder monitoring. Despite substantial innovation in the manufacturing of implantable biomedical electronic systems, such sensors have remained at the laboratory stage due to a number of critical challenges. These challenges primarily concern hermeticity and biocompatibility, sensitivity and artifacts, drift, telemetry, and energy management. Having overcome these challenges, catheter-free ambulatory urodynamic monitoring could combine a synchronized intravesical pressure sensor with a volume analyzer but only the steps of cystometry and volume measurement are currently sufficiently reproducible to simulate UDS results. The measurement of volume by infrared optical sensors, in the form of abdominal patches, appears to be promising and studies are underway to market a telemetric ambulatory urodynamic monitoring system that includes an intravesical pressure sensor. There has been considerable progress in wearable and conformable electronics on many fronts, and continued collaboration between engineers and urologists could quickly overcome current challenges. In addition, to the diagnosis of UDS, such sensors could be useful in the development of a long-term closed-loop neuromodulation system. In this review, we explore the various types of catheter-free bladder sensors, inherent challenges and solutions to overcome these challenges, and the clinical potential of such long-term implantable sensors.
Collapse
Affiliation(s)
- Benoît Vogt
- Department of Urology, Polyclinique de Blois, La Chaussée Saint-Victor, France
| |
Collapse
|
4
|
Zheng L, Cao M, Du Y, Liu Q, Emran MY, Kotb A, Sun M, Ma CB, Zhou M. Artificial enzyme innovations in electrochemical devices: advancing wearable and portable sensing technologies. NANOSCALE 2023; 16:44-60. [PMID: 38053393 DOI: 10.1039/d3nr05728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid evolution of sensing technologies, the integration of nanoscale catalysts, particularly those mimicking enzymatic functions, into electrochemical devices has surfaced as a pivotal advancement. These catalysts, dubbed artificial enzymes, embody a blend of heightened sensitivity, selectivity, and durability, laying the groundwork for innovative applications in real-time health monitoring and environmental detection. This minireview penetrates into the fundamental principles of electrochemical sensing, elucidating the unique attributes that establish artificial enzymes as foundational elements in this field. We spotlight a range of innovations where these catalysts have been proficiently incorporated into wearable and portable platforms. Navigating the pathway of amalgamating these nanoscale wonders into consumer-appealing devices presents a multitude of challenges; nevertheless, the progress made thus far signals a promising trajectory. As the intersection of materials science, biochemistry, and electronics progressively intensifies, a flourishing future seems imminent for artificial enzyme-infused electrochemical devices, with the potential to redefine the landscapes of wearable health diagnostics and portable sensing solutions.
Collapse
Affiliation(s)
- Long Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Mengzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| |
Collapse
|
5
|
Wang B, Tan C. Special Issue "Synthetic Biology for Biosensing in Health and Environmental Applications". BIOSENSORS 2023; 13:937. [PMID: 37887130 PMCID: PMC10605167 DOI: 10.3390/bios13100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/28/2023]
Abstract
Biosensors are analytical devices that utilize biological sensing elements, such as enzymes, antibodies, nucleic acids, or cells, to detect a given analyte [...].
Collapse
Affiliation(s)
- Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 310058, China
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|