1
|
Chen B, Qi L, Wu Y, Chen M, Zhou Y, He L, Zhang B, Zhang M, Wang K, He X. Cell Membrane-Anchored AND Logic Gate Aptasensor for Tumor Cell-Specific Imaging with Improved Accuracy. Anal Chem 2024; 96:14775-14782. [PMID: 39238082 DOI: 10.1021/acs.analchem.4c02077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Accurate and rapid imaging of tumor cells is of vital importance for early cancer diagnosis and intervention. Aptamer-based fluorescence sensors have become a potent instrument for bioimaging, while false positives and on-target off-tumors linked to single-biomarker aptasensors compromise the specificity and sensitivity of cancer imaging. In this paper, we describe a sequential response aptasensor for precise cancer cell identification that is based on a DNA "AND" logic gate. Specifically, the sensor consists of three single-stranded DNA, including the P-strand that can sensitively respond to an acid environment, the L-strand containing the ATP aptamer sequence, and the R-strand for target cell anchoring. These DNA strands hybridize with one another to create a Y-shaped structure (named Y-ALGN). The aptamer in the R-strand is utilized to anchor the sensor to the target cell membrane primarily. Responding to the extracellular acidic environment of the tumor (input 1), the I-motif sequence forms a tetramer structure so that the P-strand is released from the Y-shaped structure and exposes the ATP binding sites in the L-strand. Extracellular ATP, as input 2, continuously operates the DNA aptasensor to complete the logic computation. Upon the sequential response of both protons and ATP molecules, the aptasensor is activated with restored fluorescence on a particular cancer cell membrane. Benefiting from the precise computation capacity of the "AND" logic gate, the Y-ALGN aptasensor can distinguish between MCF-7 cells and normal cells with high accuracy. As a simple and dual-stimuli-responsive strategy, this nanodevice would offer a fresh approach for accurately diagnosing tumor cells.
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Lanlin Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuchen Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Mingjian Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Lin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Bin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Min Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Cheng Y, Gong S, Li Q, Shen J, Huang H. Efficacy of photodynamic therapy using hematoporphyrin derivative nanomedicine on hepatocellular carcinoma cells. J Cancer 2024; 15:5594-5604. [PMID: 39308685 PMCID: PMC11414611 DOI: 10.7150/jca.97637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Objective: To demonstrate the efficacy of photodynamic therapy (PDT) using hematoporphyrin derivative (HPD) nanomedicine in combination with conventional chemotherapy based on gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) magnetic resonance imaging (MRI) for hepatocellular carcinoma (HCC) therapy. Methods: HPD nanomedicine was prepared, and the cytotoxicity of HPD nanomedicine at different concentrations on HCC cells and the half-maximal inhibitory concentration (IC50) were analyzed. Sixty HCC patients who visited our hospital from 2021 to 2023 were retrospectively analyzed. Patient data were analyzed, with 30 cases in control group (CG) receiving conventional chemotherapy for HCC, and 30 cases in observation group (OG) receiving conventional chemotherapy combined with HPD nanomedicine PDT. Gd-DTPA MRI was utilized to monitor the morphological and biological characteristics of the lesions in patients. After treatment completion, the long-term efficacy of patients and the levels of bcl-2 and bax proteins in primary HCC cells were evaluated. Results: The IC50 values of HPD on HepG2 cell proliferation and the cell inhibition rates gradually increased with increasing doses of HPD (50 μM, 25 μM, 12.5 μM, 6.25 μM, 3.13 μM, 1.56 μM, 0.78 μM). HPD exhibited great anti-proliferative effects on HepG2 cells at relatively low concentrations. The differences in expression rates of bcl-2 protein and bax protein between groups were considerable (P<0.05). There were neglectable changes in AST and ALT levels between the two groups before treatment, but they were markedly reduced after treatment versus before treatment (P<0.05), with OG showing considerably lower levels than CG after treatment (P<0.05). Additionally, patients in OG exhibited better survival rates after the course of treatment versus those in CG. Conclusion: This study demonstrates that the combination of conventional chemotherapy based on Gd-DTPA MRI with HPD nanomedicine PDT greatly improves the efficacy of treatment for HCC patients. This combined treatment strategy not only enhances therapeutic outcomes but also alleviates adverse reactions associated with conventional treatment, providing a novel approach for future research in the treatment of HCC.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Department of Radiology, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| | - Shushu Gong
- Department of Radiology, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| | - Qianqian Li
- Department of Oncology, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| | - Juan Shen
- Department of Pharmacy, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| | - Hongjuan Huang
- Department of Radiology, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| |
Collapse
|
3
|
Shang A, Shao S, Zhao L, Liu B. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. BIOSENSORS 2024; 14:359. [PMID: 39194588 DOI: 10.3390/bios14080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.
Collapse
Affiliation(s)
- Angyang Shang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Luming Zhao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Zhang Y, Yuan D, Qi K, Zhang M, Zhang W, Wei N, Li L, Lv P, Gao J, Liu J. Feasibility Analysis of Individualized Low Flow Rate Abdominal Contrast-Enhanced Computed Tomography in Chemotherapy Patients: Dual-Source Computed Tomography With Low Tube Voltage. J Comput Assist Tomogr 2024:00004728-990000000-00319. [PMID: 38693081 DOI: 10.1097/rct.0000000000001624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE The aim of the study is to investigate the feasibility of using dual-source computed tomography (CT) combined with low flow rate and low tube voltage for postchemotherapy image assessment in cancer patients. METHODS Ninety patients undergoing contrast-enhanced CT scans of the upper abdomen were prospectively enrolled and randomly assigned to groups A, B, and C (n = 30 each). In group A, patients underwent scans at 120 kVp with 448 mgI/kg. Patients in group B underwent scans at 100 kVp with 336 mgI/kg. Patient in group C underwent scans at 70 kVp with of 224 mgI/kg. Quantitative measurements including the CT number, standard deviation of CT number, signal-to-noise ratio, contrast-to-noise ratio, subjective reader scores, and the volume and flow rate of contrast agent were evaluated for each group. RESULTS There was no statistically significant difference in the subjective image scores within the three groups except for the kidney (all P > 0.05). Group C showed significantly higher CT values, lower noise levels, and higher signal-to-noise ratio and contrast-to-noise ratio values in the majority of the regions of interest compared to the other groups (P < 0.05). In group C, the contrast agent dose was decreased by 46% compared to group A (79.48 ± 12.24 vs 42.7 ± 8.6, P < 0.01), and the contrast agent injection rate was reduced by 22% (2.7 ± 0.41 vs 2.1 ± 0.4, P < 0.01). CONCLUSIONS The use of 70 kVp tube voltage combined with low iodine flow rates prove to be a more effective approach in solving the challenge of compromised blood vessels in postchemotherapy tumor patients, without reducing image quality and diagnostic confidence.
Collapse
Affiliation(s)
- Yicun Zhang
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| | - Dian Yuan
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| | - Ke Qi
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| | - Mengyuan Zhang
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| | - Weiting Zhang
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| | - Nannan Wei
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| | | | - Peijie Lv
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| | - Jianbo Gao
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| | - Jie Liu
- From the The Department of Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou
| |
Collapse
|
5
|
Jabri A, Khan J, Taftafa B, Alsharif M, Mhannayeh A, Chinnappan R, Alzhrani A, Kazmi S, Mir MS, Alsaud AW, Yaqinuddin A, Assiri AM, AlKattan K, Vashist YK, Broering DC, Mir TA. Bioengineered Organoids Offer New Possibilities for Liver Cancer Studies: A Review of Key Milestones and Challenges. Bioengineering (Basel) 2024; 11:346. [PMID: 38671768 PMCID: PMC11048289 DOI: 10.3390/bioengineering11040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic cancer is widely regarded as the leading cause of cancer-related mortality worldwide. Despite recent advances in treatment options, the prognosis of liver cancer remains poor. Therefore, there is an urgent need to develop more representative in vitro models of liver cancer for pathophysiology and drug screening studies. Fortunately, an exciting new development for generating liver models in recent years has been the advent of organoid technology. Organoid models hold huge potential as an in vitro research tool because they can recapitulate the spatial architecture of primary liver cancers and maintain the molecular and functional variations of the native tissue counterparts during long-term culture in vitro. This review provides a comprehensive overview and discussion of the establishment and application of liver organoid models in vitro. Bioengineering strategies used to construct organoid models are also discussed. In addition, the clinical potential and other relevant applications of liver organoid models in different functional states are explored. In the end, this review discusses current limitations and future prospects to encourage further development.
Collapse
Affiliation(s)
- Abdullah Jabri
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Jibran Khan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Bader Taftafa
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Abdulaziz Mhannayeh
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
| | - Shadab Kazmi
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Pathology and laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India;
| | - Aljohara Waleed Alsaud
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Abdullah M. Assiri
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yogesh K. Vashist
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
6
|
Berzal-Herranz A, Romero-López C. Aptamers' Potential to Fill Therapeutic and Diagnostic Gaps. Pharmaceuticals (Basel) 2024; 17:105. [PMID: 38256938 PMCID: PMC10818422 DOI: 10.3390/ph17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
More than 30 years ago, in 1990, three independent research groups published several papers demonstrating that genetics could be performed in vitro in the absence of living organisms or cells [...].
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| |
Collapse
|