1
|
Sun G, Sun W, Liu J, Zha X, Lu S, Wang Y. Chitosan-Based Hydrogel Functionalized with Fe(II) Phthalocyanine for Butylated Hydroxyanisole Determination. Inorg Chem 2024; 63:17263-17273. [PMID: 39222464 DOI: 10.1021/acs.inorgchem.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The synthesis of functional electrode sensing materials is the key to the construction of electrochemical sensors. A new hydrogel electrode sensing material was developed by incorporating Fe(II) phthalocyanine (FePc) into chitosan-based hydrogels. The chitosan-based hydrogel plays a crucial role in dispersing FePc nanoparticles uniformly and generating a stable environment for the redox reaction of butylated hydroxyanisole (BHA) on the electrode surface. Under optimized conditions, the prepared electrochemical sensor exhibited a detection range of 0.1-30 and 30-1000 μmol/L, with a detection limit of 0.035 μmol/L (S/N = 3). Moreover, this sensor demonstrated exceptional resistance to interference and maintained its stability. These findings suggest that the developed electrochemical sensor is promising for reliable detection of BHA in real samples, highlighting the potential of combining conductive hydrogels with functionalized metal phthalocyanines for accurate and rapid BHA determination.
Collapse
Affiliation(s)
- Guorong Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Wang Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Junyan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaoqian Zha
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yang Wang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
2
|
Zhang J, Li M, Li C, Lyu M, Xuan X, Li H. Electrochemical needle sensor based on a B, N co-doped graphene microelectrode array for the on-site detection of salicylic acid in fruits and vegetables. Food Chem 2024; 449:139264. [PMID: 38593724 DOI: 10.1016/j.foodchem.2024.139264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
In this study, a microelectrode array sensor based on boron and nitrogen co-doped vertical graphene (BNVG) was assembled to quantify salicylic acid (SA) in living plants. The influence of B and N contents on the electrochemical reaction kinetics and SA response signal was investigated. A microneedle sensor with three optimized BNVG microelectrodes (3.57 at.% B and 3.27 at.% N) was used to quantitatively analyze SA in the 0.5-100 μM concentration range and pH 4.0-9.0, with limits of detection of 0.14-0.18 μM. Additionally, a quantitative electrochemical model database based on the BNVG microelectrode sensor was constructed to monitor the growth of cucumbers and cauliflowers, which confirmed that the SA level and plant growth rate were positively correlated. Moreover, the SA levels in various vegetables and fruits purchased from the market were measured to demonstrate the practical application prospects for on-site inspection and evaluation.
Collapse
Affiliation(s)
- Jie Zhang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Mingjie Lyu
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China.
| | - Xiuwei Xuan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
3
|
da Silva VJ, Baumgarten LG, Dreyer JP, Santana ER, Spinelli A, Winiarski JP, Vieira IC. Heparin-stabilized gold nanoparticles embedded in graphene for the electrochemical determination of esculetin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2256-2266. [PMID: 38517319 DOI: 10.1039/d4ay00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A conductive nanocomposite consisting of heparin-stabilized gold nanoparticles embedded in graphene was prepared and characterized to develop an electrochemical sensor for the determination of esculetin in tea and jam samples. The gold nanoparticles were characterized by spectroscopic and microscopic techniques. The different proportions of graphene in the nanocomposite were evaluated and characterized by electrochemical practices. The heterostructure material on the glassy carbon electrode with esculetin showed π-π stacking interactions with an adsorption-controlled process. The voltammetric profile of esculetin using the proposed nanomaterial presented oxidation and reduction peaks at +0.61 and +0.58 V vs. Ag/AgCl, respectively, facilitating the electron transfer with esculetin through the transfer of two moles of protons and two moles of electrons per mole of esculetin. Using optimized conditions and square wave voltammetry, the calibration curve was obtained with two linear ranges, from 0.1 to 20.5 μmol L-1, with a detection limit of 43.0 nmol L-1. The electrochemical sensor showed satisfactory results for repeatability and stability, although interferences were observed in the presence of high concentrations of ascorbic acid or quercetin. The sensor was successfully applied in the determination of esculetin in samples of mulberry jam, white mulberry leaf tea, and white mulberry powder tea, presenting adequate recovery ranges. This directive provides valuable insights for the development of novel electrochemical sensors using heparin-based conductive nanomaterials with improved sensitivity and sensibility.
Collapse
Affiliation(s)
- Vinicius José da Silva
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Luan Gabriel Baumgarten
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Juliana Priscila Dreyer
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Edson Roberto Santana
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Almir Spinelli
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - João Paulo Winiarski
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
4
|
Grabarczyk M, Wawruch A. Screen-Printed Carbon Electrode Modified with Carbon Nanotubes and Copper Film as a Simple Tool for Determination of Trace Concentrations of Lead Ions. MEMBRANES 2024; 14:53. [PMID: 38392680 PMCID: PMC10890294 DOI: 10.3390/membranes14020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
A copper film-modified, carboxyl-functionalized, and multi-walled carbon nanotube (MWCNT-COOH)-modified screen-printed carbon electrode (CuF/MWCNTs/SPCE) was used for lead determination using anodic stripping voltammetry. The main parameters were investigated and optimized during the development of the research procedure. The most optimal electrolyte concentrations were determined to be 0.4 M HCl and 6.3 × 10-5 M Cu(II). The optimal parameters for voltammetric stripping measurements are as follows: an accumulation potential of -0.7 V; an accumulation time of 120 s; and a pulse amplitude and pulse time of 120 mV and 2 ms, respectively. The effect of surface active substances and humic substances as potential interferents present in aqueous environmental samples was investigated. The validation of the procedure was carried out using certified reference materials, like waste water SPS-WW1 and environmental matrix TM-25.5. In addition, the developed procedure was applied to investigate lead recovery from natural environmental water, such as rivers and lakes.
Collapse
Affiliation(s)
- Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Agnieszka Wawruch
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| |
Collapse
|