1
|
Navalesi P, Oddo CM, Chisci G, Frosolini A, Gennaro P, Abbate V, Prattichizzo D, Gabriele G. The Use of Tactile Sensors in Oral and Maxillofacial Surgery: An Overview. Bioengineering (Basel) 2023; 10:765. [PMID: 37508792 PMCID: PMC10376110 DOI: 10.3390/bioengineering10070765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND This overview aimed to characterize the type, development, and use of haptic technologies for maxillofacial surgical purposes. The work aim is to summarize and evaluate current advantages, drawbacks, and design choices of presented technologies for each field of application in order to address and promote future research as well as to provide a global view of the issue. METHODS Relevant manuscripts were searched electronically through Scopus, MEDLINE/PubMed, and Cochrane Library databases until 1 November 2022. RESULTS After analyzing the available literature, 31 articles regarding tactile sensors and interfaces, sensorized tools, haptic technologies, and integrated platforms in oral and maxillofacial surgery have been included. Moreover, a quality rating is provided for each article following appropriate evaluation metrics. DISCUSSION Many efforts have been made to overcome the technological limits of computed assistant diagnosis, surgery, and teaching. Nonetheless, a research gap is evident between dental/maxillofacial surgery and other specialties such as endovascular, laparoscopic, and microsurgery; especially for what concerns electrical and optical-based sensors for instrumented tools and sensorized tools for contact forces detection. The application of existing technologies is mainly focused on digital simulation purposes, and the integration into Computer Assisted Surgery (CAS) is far from being widely actuated. Virtual reality, increasingly adopted in various fields of surgery (e.g., sino-nasal, traumatology, implantology) showed interesting results and has the potential to revolutionize teaching and learning. A major concern regarding the actual state of the art is the absence of randomized control trials and the prevalence of case reports, retrospective cohorts, and experimental studies. Nonetheless, as the research is fast growing, we can expect to see many developments be incorporated into maxillofacial surgery practice, after adequate evaluation by the scientific community.
Collapse
Affiliation(s)
- Pietro Navalesi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Department of Information Engineering, Università di Pisa, 56127 Pisa, Italy
| | - Calogero Maria Oddo
- Department of Information Engineering, Università di Pisa, 56127 Pisa, Italy
- Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Glauco Chisci
- Department of Medical Biotechnologies, School of Oral Surgery, University of Siena, 53100 Siena, Italy
| | - Andrea Frosolini
- Maxillofacial Surgery Unit, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Paolo Gennaro
- Maxillofacial Surgery Unit, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Vincenzo Abbate
- Head and Neck Section, Department of Neurosciences, Reproductive and Odontostomatological Science, Federico II University of Naples, 80013 Naples, Italy
| | - Domenico Prattichizzo
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy
| | - Guido Gabriele
- Maxillofacial Surgery Unit, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
de Carvalho V, Lazzaretti AE, Fabris JL, Muller M. Pressure-sensitive platform based on multiplexed in-series macro-bend optical fiber sensors. APPLIED OPTICS 2023; 62:C1-C7. [PMID: 37133050 DOI: 10.1364/ao.477412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This work shows a pressure-sensitive platform instrumented with a set of five in-series macro-bend optical fiber sensors. The structure of 20×20cm is divided into sixteen 5×5cm sensing cells. Sensing is based on the wavelength-dependent intensity changes in the array transmission visible spectrum, which carries information about the pressure acting on the structure. Data analysis uses principal component analysis to reduce spectral data to 12 principal components that explain 99% of the data variance and k-nearest neighbors classification and support vector regression methods. The capability of pressure detection with fewer sensors than the number of monitored cells was demonstrated with an accuracy of 94% for predicting the pressure location and a mean absolute error of 0.31 kPa within 3.74-9.98 kPa range.
Collapse
|
3
|
Bayer IS. MEMS-Based Tactile Sensors: Materials, Processes and Applications in Robotics. MICROMACHINES 2022; 13:2051. [PMID: 36557349 PMCID: PMC9782357 DOI: 10.3390/mi13122051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Commonly encountered problems in the manipulation of objects with robotic hands are the contact force control and the setting of approaching motion. Microelectromechanical systems (MEMS) sensors on robots offer several solutions to these problems along with new capabilities. In this review, we analyze tactile, force and/or pressure sensors produced by MEMS technologies including off-the-shelf products such as MEMS barometric sensors. Alone or in conjunction with other sensors, MEMS platforms are considered very promising for robots to detect the contact forces, slippage and the distance to the objects for effective dexterous manipulation. We briefly reviewed several sensing mechanisms and principles, such as capacitive, resistive, piezoresistive and triboelectric, combined with new flexible materials technologies including polymers processing and MEMS-embedded textiles for flexible and snake robots. We demonstrated that without taking up extra space and at the same time remaining lightweight, several MEMS sensors can be integrated into robotic hands to simulate human fingers, gripping, hardness and stiffness sensations. MEMS have high potential of enabling new generation microactuators, microsensors, micro miniature motion-systems (e.g., microrobots) that will be indispensable for health, security, safety and environmental protection.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
4
|
Lin JC, Liatsis P, Alexandridis P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2059673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jui-Chi Lin
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
| | - Paschalis Alexandridis
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
5
|
Ali MA, Hu C, Yttri EA, Panat R. Recent Advances in 3D Printing of Biomedical Sensing Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2107671. [PMID: 36324737 PMCID: PMC9624470 DOI: 10.1002/adfm.202107671] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/03/2023]
Abstract
Additive manufacturing, also called 3D printing, is a rapidly evolving technique that allows for the fabrication of functional materials with complex architectures, controlled microstructures, and material combinations. This capability has influenced the field of biomedical sensing devices by enabling the trends of device miniaturization, customization, and elasticity (i.e., having mechanical properties that match with the biological tissue). In this paper, the current state-of-the-art knowledge of biomedical sensors with the unique and unusual properties enabled by 3D printing is reviewed. The review encompasses clinically important areas involving the quantification of biomarkers (neurotransmitters, metabolites, and proteins), soft and implantable sensors, microfluidic biosensors, and wearable haptic sensors. In addition, the rapid sensing of pathogens and pathogen biomarkers enabled by 3D printing, an area of significant interest considering the recent worldwide pandemic caused by the novel coronavirus, is also discussed. It is also described how 3D printing enables critical sensor advantages including lower limit-of-detection, sensitivity, greater sensing range, and the ability for point-of-care diagnostics. Further, manufacturing itself benefits from 3D printing via rapid prototyping, improved resolution, and lower cost. This review provides researchers in academia and industry a comprehensive summary of the novel possibilities opened by the progress in 3D printing technology for a variety of biomedical applications.
Collapse
Affiliation(s)
- Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| |
Collapse
|
6
|
Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile Sensor and DCNN. SENSORS 2021; 21:s21186024. [PMID: 34577230 PMCID: PMC8473115 DOI: 10.3390/s21186024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
A tactile sensor array is a crucial component for applying physical sensors to a humanoid robot. This work focused on developing a palm-size tactile sensor array (56.0 mm × 56.0 mm) to apply object recognition for the humanoid robot hand. This sensor was based on a PCB technology operating with the piezoresistive principle. A conductive polymer composites sheet was used as a sensing element and the matrix array of this sensor was 16 × 16 pixels. The sensitivity of this sensor was evaluated and the sensor was installed on the robot hand. The tactile images, with resolution enhancement using bicubic interpolation obtained from 20 classes, were used to train and test 19 different DCNNs. InceptionResNetV2 provided superior performance with 91.82% accuracy. However, using the multimodal learning method that included InceptionResNetV2 and XceptionNet, the highest recognition rate of 92.73% was achieved. Moreover, this recognition rate improved when the object exploration was applied to demonstrate.
Collapse
|
7
|
Assaf T. A Frequency Modulation-Based Taxel Array: A Bio-Inspired Architecture for Large-Scale Artificial Skin. SENSORS (BASEL, SWITZERLAND) 2021; 21:5112. [PMID: 34372347 PMCID: PMC8347592 DOI: 10.3390/s21155112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022]
Abstract
This work introduces an array prototype based on a Frequency Modulation (FM) encoding architecture to transfer multiple sensor signals on a single wire. The use case presented adopts Hall-effect sensors as an example to represent a much larger range of sensor types (e.g., proximity and temperature). This work aims to contribute to large area artificial skin systems which are a key element to enhance robotic platforms. Artificial skin will allow robotic platforms to have spatial awareness which will make interaction with objects and users safe. The FM-based architecture has been developed to address limitations in large-scale artificial skin scalability. Scalability issues include power requirements; number of wires needed; as well as frequency, density, and sensitivity bottlenecks. In this work, eight sensor signals are simultaneously acquired, transferred on a single wire and decoded in real-time. The overall taxel array current consumption is 36 mA. The work experimentally validates and demonstrates that different input signals can be effectively transferred using this approach minimizing wiring and power consumption of the taxel array. Four different tests using single as well as multiple stimuli are presented. Observations on performances, noise, and taxel array behaviour are reported. The results show that the taxel array is reliable and effective in detecting the applied stimuli.
Collapse
Affiliation(s)
- Tareq Assaf
- Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
8
|
Stretchable Capacitive Pressure Sensing Sleeve Deployable onto Catheter Balloons towards Continuous Intra-Abdominal Pressure Monitoring. BIOSENSORS-BASEL 2021; 11:bios11050156. [PMID: 34069108 PMCID: PMC8157154 DOI: 10.3390/bios11050156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Intra-abdominal pressure (IAP) is closely correlated with intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) diagnoses, indicating the need for continuous monitoring. Early intervention for IAH and ACS has been proven to reduce the rate of morbidity. However, the current IAP monitoring method is a tedious process with a long calibration time for a single time point measurement. Thus, there is the need for an efficient and continuous way of measuring IAP. Herein, a stretchable capacitive pressure sensor with controlled microstructures embedded into a cylindrical elastomeric mold, fabricated as a pressure sensing sleeve, is presented. The sensing sleeve can be readily deployed onto intrabody catheter balloons for pressure measurement at the site. The thin and highly conformable nature of the pressure sensing sleeve captures the pressure change without hindering the functionality of the foley catheter balloon.
Collapse
|
9
|
Fabrication, characterization and applications of graphene electronic tattoos. Nat Protoc 2021; 16:2395-2417. [PMID: 33846631 DOI: 10.1038/s41596-020-00489-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022]
Abstract
Numerous fields of science and technology, including healthcare, robotics and bioelectronics, have begun to switch their research direction from developing 'high-end, high-cost' tools towards 'high-end, low-cost' solutions. Graphene electronic tattoos (GETs), whose fabrication protocol is discussed in this work, are ideal building blocks of future wearable technology due to their outstanding electromechanical properties. The GETs are composed of high-quality, large-scale graphene that is transferred onto tattoo paper, resulting in an electronic device that is applied onto skin like a temporary tattoo. Here, we provide a comprehensive GET fabrication protocol, starting from graphene growth and ending with integration onto human skin. The methodology presented is unique since it utilizes high-quality electronic-grade graphene, while the processing is done by using low-cost and off-the-shelf methods, such as a mechanical cutter plotter. The GETs can be either used in combination with advanced scientific equipment to perform precision experiments, or with low-cost electrophysiology boards, to conduct similar operations from home. In this protocol, we showcase how GETs can be applied onto the human body and how they can be used to obtain a variety of biopotentials, including electroencephalogram (brain waves), electrocardiogram (heart activity), electromyogram (muscle activity), as well as monitoring of body temperature and hydration. With graphene available from commercial sources, the whole protocol consumes ~3 h of labor and does not require highly trained personnel. The protocol described in this work can be readily replicated in simple laboratories, including high school facilities.
Collapse
|
10
|
Tabor J, Agcayazi T, Fleming A, Thompson B, Kapoor A, Liu M, Lee M, Huang HH, Bozkurt A, Ghosh T. Textile-based Pressure Sensors for Monitoring Prosthetic-Socket Interfaces. IEEE SENSORS JOURNAL 2021; 21:9413-9422. [PMID: 33776594 PMCID: PMC7990115 DOI: 10.1109/jsen.2021.3053434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Amputees are prone to experiencing discomfort when wearing their prosthetic devices. As the amputee population grows this becomes a more prevalent and pressing concern. There is a need for new prosthetic technologies to construct more comfortable and well-fitted liners and sockets. One of the well-recognized impediments to the development of new prosthetic technology is the lack of practical inner socket sensors to monitor the inner socket environment (ISE), or the region between the residual limb and the socket. Here we present a capacitive pressure sensor fabricated through a simple, and scalable sewing process using commercially available conductive yarns and textile materials. This fully-textile sensor provides a soft, flexible, and comfortable sensing system for monitoring the ISE. We provide details of our low-power sensor system capable of high-speed data collection from up to four sensor arrays. Additionally, we demonstrate two custom set-ups to test and validate the textile-based sensors in a simulated prosthetic environment. Finally, we utilize the textile-based sensors to study the ISE of a bilateral transtibial amputee. Results indicate that the textile-based sensors provide a promising potential for seamlessly monitoring the ISE.
Collapse
Affiliation(s)
- Jordan Tabor
- The Department of Textile Engineering, Chemistry, and Science. at NC State University, Raleigh, NC, USA
| | - Talha Agcayazi
- Department of Electrical and Computer Engineering. at NC State University
| | - Aaron Fleming
- Department of Biomedical Engineering at NC State University
| | - Brendan Thompson
- Department of Electrical and Computer Engineering. at NC State University
| | - Ashish Kapoor
- The Department of Textile Engineering, Chemistry, and Science. at NC State University, Raleigh, NC, USA
| | - Ming Liu
- Department of Biomedical Engineering at NC State University. Prof. Michael Lee is with Baylor College of Medicine, Houston, TX, USA
| | - Michael Lee
- Baylor College of Medicine, Houston, TX, USA
| | - He Helen Huang
- Department of Biomedical Engineering at NC State University. Prof. Michael Lee is with Baylor College of Medicine, Houston, TX, USA
| | - Alper Bozkurt
- Department of Electrical and Computer Engineering. at NC State University
| | - Tushar Ghosh
- The Department of Textile Engineering, Chemistry, and Science. at NC State University, Raleigh, NC, USA
| |
Collapse
|
11
|
Huang C, Wang Q, Zhao M, Chen C, Pan S, Yuan M. Tactile Perception Technologies and Their Applications in Minimally Invasive Surgery: A Review. Front Physiol 2020; 11:611596. [PMID: 33424634 PMCID: PMC7785975 DOI: 10.3389/fphys.2020.611596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
Minimally invasive surgery (MIS) has been the preferred surgery approach owing to its advantages over conventional open surgery. As a major limitation, the lack of tactile perception impairs the ability of surgeons in tissue distinction and maneuvers. Many studies have been reported on industrial robots to perceive various tactile information. However, only force data are widely used to restore part of the surgeon’s sense of touch in MIS. In recent years, inspired by image classification technologies in computer vision, tactile data are represented as images, where a tactile element is treated as an image pixel. Processing raw data or features extracted from tactile images with artificial intelligence (AI) methods, including clustering, support vector machine (SVM), and deep learning, has been proven as effective methods in industrial robotic tactile perception tasks. This holds great promise for utilizing more tactile information in MIS. This review aims to provide potential tactile perception methods for MIS by reviewing literatures on tactile sensing in MIS and literatures on industrial robotic tactile perception technologies, especially AI methods on tactile images.
Collapse
Affiliation(s)
- Chao Huang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,Ningbo Institute of Information Technology Application, Chinese Academy of Sciences, Ningbo, China
| | - Qizhuo Wang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Mingfu Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Chunyan Chen
- Ningbo Institute of Information Technology Application, Chinese Academy of Sciences, Ningbo, China
| | - Sinuo Pan
- Ningbo Institute of Information Technology Application, Chinese Academy of Sciences, Ningbo, China
| | - Minjie Yuan
- Ningbo Institute of Information Technology Application, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
12
|
A Face-Shear Mode Piezoelectric Array Sensor for Elasticity and Force Measurement. SENSORS 2020; 20:s20030604. [PMID: 31978965 PMCID: PMC7038069 DOI: 10.3390/s20030604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 11/17/2022]
Abstract
We present the development of a 6 × 6 piezoelectric array sensor for measuring elasticity and force. The proposed sensor employs an impedance measurement technique, sensing the acoustic load impedance of a target by measuring the electrical impedance shift of face-shear mode PMN-PT (lead magnesium niobate-lead titanate) single crystal elements. Among various modes of PMN-PT single crystals, the face-shear mode was selected due to its especially high sensitivity to acoustic loads. To verify the elasticity sensing performance, gelatin samples with different elastic moduli were prepared and tested. For the force measurement test, different magnitudes of force were loaded to the sensing layer whose acoustic impedance was varied with applied forces. From the experimental results, the fabricated sensor showed an elastic stiffness sensitivity of 23.52 Ohm/MPa with a resolution of 4.25 kPa and contact force sensitivity of 19.27 Ohm/N with a resolution of 5.19 mN. In addition, the mapping experiment of elasticity and force using the sensor array was successfully demonstrated.
Collapse
|
13
|
Abstract
In this study, a simple method to obtain pure β-phase directly from the melt process is proposed. A series of PVDF and ionic liquid (IL) was prepared by a solvent casting method with appropriate associated with the subsequent annealing treatment. IL plays a role of filler, which can create strong electrostatic interaction with PVDF matrix and directly induce β-phase crystallization on the PVDF during the melt. PVDF film sample is immersed in hot water for annealing treatment at different temperatures (25 °C to 70 °C). We found that annealing in high temperatures especially can not only increase more IL inserted into the amorphous region of polymer matrix to make more phase transformation, but also accelerate IL removal. Characteristics and performance of the PVDF films were investigated by use of FTIR, XRD, SEM, and AFM. Piezoelectric coefficient d33 as well as d31, degree of crystallinity, and sensitivity are measured in experiment to verify the performance of PVDF film.
Collapse
|
14
|
Cutrone A, Micera S. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Adv Healthc Mater 2019; 8:e1801345. [PMID: 31763784 DOI: 10.1002/adhm.201801345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Neuroprosthetics and neuromodulation represent a promising field for several related applications in the central and peripheral nervous system, such as the treatment of neurological disorders, the control of external robotic devices, and the restoration of lost tactile functions. These actions are allowed by the neural interface, a miniaturized implantable device that most commonly exploits electrical energy to fulfill these operations. A neural interface must be biocompatible, stable over time, low invasive, and highly selective; the challenge is to develop a safe, compact, and reliable tool for clinical applications. In case of anatomical impairments, neuroprosthetics is bound to the need of exploring the surrounding environment by fast-responsive and highly sensitive artificial tactile sensors that mimic the natural sense of touch. Tactile sensors and neural interfaces are closely interconnected since the readouts from the first are required to convey information to the neural implantable apparatus. The role of these devices is pivotal hence technical improvements are essential to ensure a secure system to be eventually adopted in daily life. This review highlights the fundamental criteria for the design and microfabrication of neural interfaces and artificial tactile sensors, their use in clinical applications, and future enhancements for the release of a second generation of devices.
Collapse
Affiliation(s)
- Annarita Cutrone
- The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1202, Switzerland
| |
Collapse
|
15
|
Shirhatti V, Kedambaimoole V, Nuthalapati S, Neella N, Nayak MM, Rajanna K. High-range noise immune supersensitive graphene-electrolyte capacitive strain sensor for biomedical applications. NANOTECHNOLOGY 2019; 30:475502. [PMID: 31430732 DOI: 10.1088/1361-6528/ab3cd2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents development and performance assessment of an innovative and a highly potent graphene-electrolyte capacitive sensor (GECS) based on the supercapacitor model. Although graphene has been widely researched and adapted in supercapacitors as electrode material, this combination has not been applied in sensor technology. A low base capacitance, generally the impeding factor in capacitive sensors, is addressed by incorporating electric double layer capacitance in GECS, and a million-fold increase in base capacitance is achieved. The high base capacitance (∼22.0 μF) promises to solve many inherent issues pertaining to capacitive sensors. GECS is fabricated by using thermally reduced microwave exfoliated graphene oxide material to form interdigitated electrodes coated with solid-state electrolyte which forms the double layer capacitance. The capacitance response of GECS on subjecting to strain is examined and an enormous operating range (∼300 nF) is seen, which is the salient feature of this sensor. The GECS showed an impressive device sensitivity of 11.24 nF kPa-1 and good immunity towards noise i.e. lead capacitance and stray capacitance. Two regimes of operation are identified based on the procedure of device fabrication. The device can be applied to varied applications and one such biomedical application of breath pattern monitoring is demonstrated.
Collapse
Affiliation(s)
- Vijay Shirhatti
- Dept. of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | |
Collapse
|
16
|
Gupta S, Loh KJ, Pedtke A. Sensing and actuation technologies for smart socket prostheses. Biomed Eng Lett 2019; 10:103-118. [PMID: 32175132 DOI: 10.1007/s13534-019-00137-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 01/20/2023] Open
Abstract
The socket is the most critical part of every lower-limb prosthetic system, since it serves as the interfacial component that connects the residual limb with the artificial system. However, many amputees abandon their socket prostheses due to the high-level of discomfort caused by the poor interaction between the socket and residual limb. In general, socket prosthesis performance is determined by three main factors, namely, residual limb-socket interfacial stress, volume fluctuation of the residual limb, and temperature. This review paper summarizes the various sensing and actuation solutions that have been proposed for improving socket performance and for realizing next-generation socket prostheses. The working principles of different sensors and how they have been tested or used for monitoring the socket interface are discussed. Furthermore, various actuation methods that have been proposed for actively modifying and improving the socket interface are also reviewed. Through the continued development and integration of these sensing and actuation technologies, the long-term vision is to realize smart socket prostheses. Such smart socket systems will not only function as a socket prosthesis but will also be able to sense parameters that cause amputee discomfort and self-adjust to optimize its fit, function, and performance.
Collapse
Affiliation(s)
- Sumit Gupta
- 1Department of Structural Engineering, University of California-San Diego, La Jolla, CA 92093-0085 USA
| | - Kenneth J Loh
- 1Department of Structural Engineering, University of California-San Diego, La Jolla, CA 92093-0085 USA
| | | |
Collapse
|
17
|
Abstract
This paper presents the fabrication and implementation of novel resistive sensors that were implemented for strain-sensing applications. Some of the critical factors for the development of resistive sensors are addressed in this paper, such as the cost of fabrication, the steps of the fabrication process which make it time-consuming to complete each prototype, and the inability to achieve optimised electrical and mechanical characteristics. The sensors were fabricated via magnetron sputtering of thin-film chromium and gold layer on the thin-film substrates at defined thicknesses. Sticky copper tapes were attached on the two sides of the sensor patches to form the electrodes. The operating principle of the fabricated sensors was based on the change in their responses with respect to the corresponding changes in their relative resistance as a function of the applied strain. The strain-induced characteristics of the patches were studied with different kinds of experiments, such as consecutive bending and pressure application. The sensors with 400 nm thickness of gold layer obtained a sensitivity of 0.0086 Ω/ppm for the pressure ranging between 0 and 400 kPa. The gauge factor of these sensors was between 4.9–6.6 for temperatures ranging between 25 °C and 55 °C. They were also used for tactile sensing to determine their potential as thin-film sensors for industrial applications, like in robotic and pressure-mapping applications. The results were promising in regards to the sensors’ controllable film thickness, easy operation, purity of the films and mechanically sound nature. These sensors can provide a podium to enhance the usage of resistive sensors on a higher scale to develop thin-film sensors for industrial applications.
Collapse
|
18
|
A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers. ELECTRONICS 2019. [DOI: 10.3390/electronics8020169] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Any electric transmission lines involving the transfer of power or electric signal requires the matching of electric parameters with the driver, source, cable, or the receiver electronics. Proceeding with the design of electric impedance matching circuit for piezoelectric sensors, actuators, and transducers require careful consideration of the frequencies of operation, transmitter or receiver impedance, power supply or driver impedance and the impedance of the receiver electronics. This paper reviews the techniques available for matching the electric impedance of piezoelectric sensors, actuators, and transducers with their accessories like amplifiers, cables, power supply, receiver electronics and power storage. The techniques related to the design of power supply, preamplifier, cable, matching circuits for electric impedance matching with sensors, actuators, and transducers have been presented. The paper begins with the common tools, models, and material properties used for the design of electric impedance matching. Common analytical and numerical methods used to develop electric impedance matching networks have been reviewed. The role and importance of electrical impedance matching on the overall performance of the transducer system have been emphasized throughout. The paper reviews the common methods and new methods reported for electrical impedance matching for specific applications. The paper concludes with special applications and future perspectives considering the recent advancements in materials and electronics.
Collapse
|
19
|
Tactile sensor-based real-time clustering for tissue differentiation. Int J Comput Assist Radiol Surg 2018; 14:129-137. [PMID: 30293172 DOI: 10.1007/s11548-018-1869-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Reliable intraoperative delineation of tumor from healthy brain tissue is essentially based on the neurosurgeon's visual aspect and tactile impression of the considered tissue, which is-due to inherent low brain consistency contrast-a challenging task. Development of an intelligent artificial intraoperative tactile perception will be a relevant task to improve the safety during surgery, especially when-as for neuroendoscopy-tactile perception will be damped or-as for surgical robotic applications-will not be a priori existent. Here, we present the enhancements and the evaluation of a tactile sensor based on the use of a piezoelectric tactile sensor. METHODS A robotic-driven piezoelectric bimorph sensor was excited using multisine to obtain the frequency response function of the contact between the sensor and fresh ex vivo porcine tissue probes. Based on load-depth, relaxation and creep response tests, viscoelastic parameters E1 and E2 for the elastic moduli and η for the viscosity coefficient have been obtained allowing tissue classification. Data analysis was performed by a multivariate cluster algorithm. RESULTS Cluster algorithm assigned five clusters for the assignment of white matter, basal ganglia and thalamus probes. Basal ganglia and white matter have been assigned to a common cluster, revealing a less discriminatory power for these tissue types, whereas thalamus was exclusively delineated; gray matter could even be separated in subclusters. CONCLUSIONS Bimorph-based, multisine-excited tactile sensors reveal a high sensitivity in ex vivo tissue-type differentiation. Although, the sensor principle has to be further evaluated, these data are promising.
Collapse
|
20
|
Ting Y, Suprapto, Chiu CW, Gunawan H. Characteristic analysis of biaxially stretched PVDF thin films. J Appl Polym Sci 2018. [DOI: 10.1002/app.46677] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung Ting
- Department of Mechanical Engineering; Chung Yuan Christian University (CYCU); Chung Li Taiwan 32023
| | | | - Chun-Wei Chiu
- Department of Mechanical Engineering; Chung Yuan Christian University (CYCU); Chung Li Taiwan 32023
| | - Hariyanto Gunawan
- Department of Mechanical Engineering; Chung Yuan Christian University (CYCU); Chung Li Taiwan 32023
| |
Collapse
|
21
|
Abstract
In the head and neck region, great potential is seen in robot-assisted surgery (RAS). Mainly in cancer surgery, the use of robotic systems seems to be of interest. Until today, two robotic systems (DaVinci® und FLEX®) have gained approval for clinical use in the head and neck region, and multiple other systems are currently in pre-clinical testing. Although, certain groups of patients may benefit from RAS, no unbiased randomized clinical studies are available. Until today, it was not possible to satisfactorily prove any advantage of RAS as compared to standard procedures. The limited clinical benefit and the additional financial burden seem to be the main reasons, why the comprehensive application of RAS has not been realized so far.This review article describes the large variety of clinical applications for RAS in the head and neck region. In addition, the financial and technical challenges, as well as ongoing developments of RAS are highlighted. Special focus is put on risks associated with RAS and current clinical studies. We believe, that RAS will find its way into clinical routine during the next years. Therefore, medical staff will have to increasingly face the technical, scientific and ethical features of RAS.
Collapse
Affiliation(s)
- Patrick J Schuler
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Ulm
| |
Collapse
|
22
|
Alemán C, Fabregat G, Armelin E, Buendía JJ, Llorca J. Plasma surface modification of polymers for sensor applications. J Mater Chem B 2018; 6:6515-6533. [DOI: 10.1039/c8tb01553h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polymeric sensors play an increasingly important role in monitoring the environment we live in, providing relevant information for a host of applications.
Collapse
Affiliation(s)
- Carlos Alemán
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| | - Georgina Fabregat
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| | - Jorge J. Buendía
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| | - Jordi Llorca
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| |
Collapse
|
23
|
Li Q, Dhakal R, Kim J. Microdroplet-based On-Demand Drawing of High Aspect-Ratio Elastomeric Micropillar and Its Contact Sensing Application. Sci Rep 2017; 7:17009. [PMID: 29209022 PMCID: PMC5717269 DOI: 10.1038/s41598-017-17230-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/16/2017] [Indexed: 11/10/2022] Open
Abstract
High aspect-ratio elastomeric micropillars play important roles as the platform for microscale sensing and actuation. Many soft-lithographic techniques have been developed for their facile realization but most of the techniques are limited to build the micropillars only on totally flat, widely accessible substrate areas with the micropillar’s structural characteristics completely predetermined, leaving little room for in situ control. Here we demonstrate a new technique which overcomes these limitations by directly drawing micropillars from pipette-dispensed PDMS microdroplets using vacuum-chucked microspheres. The combined utilization of PDMS microdroplets and microspheres not only enables the realization of microsphere-tipped PDMS micropillars on non-flat, highly space-constrained substrate areas at in situ controllable heights but also allows arraying of micropillars with dissimilar heights at a close proximity. To validate the new technique’s utility and versatility, we realize PDMS micropillars on various unconventional substrate areas in various configurations. We also convert one of them, the optical fiber/micropillar hybrid, into a soft optical contact sensor. Both the fabrication technique and the resulting sensing scheme will be useful for future biomedical microsystems.
Collapse
Affiliation(s)
- Qiang Li
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Rabin Dhakal
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jaeyoun Kim
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
24
|
Zou L, Ge C, Wang ZJ, Cretu E, Li X. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2653. [PMID: 29149080 PMCID: PMC5713637 DOI: 10.3390/s17112653] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.
Collapse
Affiliation(s)
- Liang Zou
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Chang Ge
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Z Jane Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Edmond Cretu
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Xiaoou Li
- College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
25
|
Al-Fakih E, Arifin N, Pirouzi G, Mahamd Adikan FR, Shasmin HN, Abu Osman NA. Optical fiber Bragg grating-instrumented silicone liner for interface pressure measurement within prosthetic sockets of lower-limb amputees. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-8. [PMID: 28822140 DOI: 10.1117/1.jbo.22.8.087001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction.
Collapse
Affiliation(s)
- Ebrahim Al-Fakih
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, Kuala Lumpur, Malaysia
| | - Nooranida Arifin
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, Kuala Lumpur, Malaysia
| | - Gholamhossein Pirouzi
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, Kuala Lumpur, Malaysia
| | - Faisal Rafiq Mahamd Adikan
- University of Malaya, Department of Electrical Engineering, Faculty of Engineering, Kuala Lumpur, Malaysia
| | - Hanie Nadia Shasmin
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, Kuala Lumpur, Malaysia
| | - Noor Azuan Abu Osman
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Cerveri P, Quinzi M, Bovio D, Frigo CA. A Novel Wearable Apparatus to Measure Fingertip Forces in Manipulation Tasks Based on MEMS Barometric Sensors. IEEE TRANSACTIONS ON HAPTICS 2017; 10:317-324. [PMID: 28114037 DOI: 10.1109/toh.2016.2636822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Artificial tactile sensing is a challenging research topic in robotics, motor control, and rehabilitation engineering encompassing multi-disciplinary skills and different technologies. This paper presents the development of a wearable tactile thimble system using MEMS barometric sensors and flexible printed circuit board. Barometric sensors were carefully processed to make them able to transduce contact forces. Thumb, index, and medium fingers were equipped with an array of six sensing elements each, covering the central, lateral, and medial aspects of the fingertip. The sensor integration, signal read-out and processing, hardware architecture of the device, along with the calibration protocol, were described. The test results showed adequate sensitivity at very low forces with an almost linear transduction range up to about 4N (RMSE: 0.04N). Tests on object manipulation tasks highlighted the value of the proposed system demonstrating the ability of measuring both the force amplitude and contact points, demonstrating the suitability of barometric sensors for tactile applications.
Collapse
|
27
|
Lauretti C, Cordella F, Guglielmelli E, Zollo L. Learning by Demonstration for Planning Activities of Daily Living in Rehabilitation and Assistive Robotics. IEEE Robot Autom Lett 2017. [DOI: 10.1109/lra.2017.2669369] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Rongala UB, Mazzoni A, Oddo CM. Neuromorphic Artificial Touch for Categorization of Naturalistic Textures. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:819-829. [PMID: 26372658 DOI: 10.1109/tnnls.2015.2472477] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We implemented neuromorphic artificial touch and emulated the firing behavior of mechanoreceptors by injecting the raw outputs of a biomimetic tactile sensor into an Izhikevich neuronal model. Naturalistic textures were evaluated with a passive touch protocol. The resulting neuromorphic spike trains were able to classify ten naturalistic textures ranging from textiles to glass to BioSkin, with accuracy as high as 97%. Remarkably, rather than on firing rate features calculated over the stimulation window, the highest achieved decoding performance was based on the precise spike timing of the neuromorphic output as captured by Victor Purpura distance. We also systematically varied the sliding velocity and the contact force to investigate the role of sensing conditions in categorizing the stimuli via the artificial sensory system. We found that the decoding performance based on the timing of neuromorphic spike events was robust for a broad range of sensing conditions. Being able to categorize naturalistic textures in different sensing conditions, these neurorobotic results pave the way to the use of neuromorphic tactile sensors in future real-life neuroprosthetic applications.
Collapse
|
29
|
Franceschi M, Seminara L, Dosen S, Strbac M, Valle M, Farina D. A System for Electrotactile Feedback Using Electronic Skin and Flexible Matrix Electrodes: Experimental Evaluation. IEEE TRANSACTIONS ON HAPTICS 2017; 10:162-172. [PMID: 27775538 DOI: 10.1109/toh.2016.2618377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Myoelectric prostheses are successfully controlled using muscle electrical activity, thereby restoring lost motor functions. However, the somatosensory feedback from the prosthesis to the user is still missing. The sensory substitution methods described in the literature comprise mostly simple position and force sensors combined with discrete stimulation units. The present study describes a novel system for sophisticated electrotactile feedback integrating advanced distributed sensing (electronic skin) and stimulation (matrix electrodes). The system was tested in eight healthy subjects who were asked to recognize the shape, trajectory, and direction of a set of dynamic movement patterns (single lines, geometrical objects, letters) presented on the electronic skin. The experiments demonstrated that the system successfully translated the mechanical interaction into the moving electrotactile profiles, which the subjects could recognize with a good performance (shape recognition: 86±8% lines, 73±13% geometries, 72±12% letters). In particular, the subjects could identify the movement direction with a high confidence. These results are in accordance with previous studies investigating the recognition of moving stimuli in human subjects. This is an important development towards closed-loop prostheses providing comprehensive and sophisticated tactile feedback to the user, facilitating the control and the embodiment of the artificial device into the user body scheme.
Collapse
|
30
|
Al-Fakih EA, Abu Osman NA, Mahmad Adikan FR. Techniques for Interface Stress Measurements within Prosthetic Sockets of Transtibial Amputees: A Review of the Past 50 Years of Research. SENSORS 2016; 16:s16071119. [PMID: 27447646 PMCID: PMC4970162 DOI: 10.3390/s16071119] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/12/2016] [Accepted: 06/02/2016] [Indexed: 11/18/2022]
Abstract
The distribution of interface stresses between the residual limb and prosthetic socket of a transtibial amputee has been considered as a direct indicator of the socket quality fit and comfort. Therefore, researchers have been very interested in quantifying these interface stresses in order to evaluate the extent of any potential damage caused by the socket to the residual limb tissues. During the past 50 years a variety of measurement techniques have been employed in an effort to identify sites of excessive stresses which may lead to skin breakdown, compare stress distributions in various socket designs, and evaluate interface cushioning and suspension systems, among others. The outcomes of such measurement techniques have contributed to improving the design and fitting of transtibial sockets. This article aims to review the operating principles, advantages, and disadvantages of conventional and emerging techniques used for interface stress measurements inside transtibial sockets. It also reviews and discusses the evolution of different socket concepts and interface stress investigations conducted in the past five decades, providing valuable insights into the latest trends in socket designs and the crucial considerations for effective stress measurement tools that lead to a functional prosthetic socket.
Collapse
Affiliation(s)
- Ebrahim A Al-Fakih
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Faisal Rafiq Mahmad Adikan
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
31
|
Ciuti G, Caliò R, Camboni D, Neri L, Bianchi F, Arezzo A, Koulaouzidis A, Schostek S, Stoyanov D, Oddo CM, Magnani B, Menciassi A, Morino M, Schurr MO, Dario P. Frontiers of robotic endoscopic capsules: a review. JOURNAL OF MICRO-BIO ROBOTICS 2016; 11:1-18. [PMID: 29082124 PMCID: PMC5646258 DOI: 10.1007/s12213-016-0087-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures.
Collapse
Affiliation(s)
- Gastone Ciuti
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - R Caliò
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - D Camboni
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - L Neri
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy.,Ekymed S.r.l., Livorno, Italy
| | - F Bianchi
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - A Arezzo
- Department of Surgical Disciplines, University of Torino, Torino, Italy
| | - A Koulaouzidis
- Endoscopy Unit, The Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | | | - D Stoyanov
- Centre for Medical Image Computing and the Department of Computer Science, University College London, London, UK
| | - C M Oddo
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | | | - A Menciassi
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - M Morino
- Department of Surgical Disciplines, University of Torino, Torino, Italy
| | - M O Schurr
- Ovesco Endoscopy AG, Tübingen, Germany.,Steinbeis University Berlin, Berlin, Germany
| | - P Dario
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| |
Collapse
|
32
|
Ciancio AL, Cordella F, Barone R, Romeo RA, Bellingegni AD, Sacchetti R, Davalli A, Di Pino G, Ranieri F, Di Lazzaro V, Guglielmelli E, Zollo L. Control of Prosthetic Hands via the Peripheral Nervous System. Front Neurosci 2016; 10:116. [PMID: 27092041 PMCID: PMC4824757 DOI: 10.3389/fnins.2016.00116] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control.
Collapse
Affiliation(s)
- Anna Lisa Ciancio
- Unit of Biomedical Robotics and Biomicrosystems, Department of Engineering, Università Campus Bio-Medico di Roma Roma, Italy
| | - Francesca Cordella
- Unit of Biomedical Robotics and Biomicrosystems, Department of Engineering, Università Campus Bio-Medico di Roma Roma, Italy
| | - Roberto Barone
- Unit of Biomedical Robotics and Biomicrosystems, Department of Engineering, Università Campus Bio-Medico di Roma Roma, Italy
| | - Rocco Antonio Romeo
- Unit of Biomedical Robotics and Biomicrosystems, Department of Engineering, Università Campus Bio-Medico di Roma Roma, Italy
| | - Alberto Dellacasa Bellingegni
- Unit of Biomedical Robotics and Biomicrosystems, Department of Engineering, Università Campus Bio-Medico di Roma Roma, Italy
| | | | | | - Giovanni Di Pino
- Institute of Neurology, Università Campus Bio-Medico di Roma Roma, Italy
| | - Federico Ranieri
- Institute of Neurology, Università Campus Bio-Medico di Roma Roma, Italy
| | | | - Eugenio Guglielmelli
- Unit of Biomedical Robotics and Biomicrosystems, Department of Engineering, Università Campus Bio-Medico di Roma Roma, Italy
| | - Loredana Zollo
- Unit of Biomedical Robotics and Biomicrosystems, Department of Engineering, Università Campus Bio-Medico di Roma Roma, Italy
| |
Collapse
|
33
|
Yeung BPM, Chiu PWY. Application of robotics in gastrointestinal endoscopy: A review. World J Gastroenterol 2016; 22:1811-1825. [PMID: 26855540 PMCID: PMC4724612 DOI: 10.3748/wjg.v22.i5.1811] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/12/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for the natural orifice transluminal endoscopic surgery paradigm. Increasing amount of evidence suggest the focus of development should be placed on advanced endolumenal procedures such as endoscopic submucosal dissection instead. A thorough literature analysis was performed to assess the current status of robotic flexible endoscopic platforms designed for advanced endolumenal procedures. Current efforts are mainly focused on robotic locomotion and robotic instrument control. In the future, advances in actuation and servoing technology, optical analysis, augmented reality and wireless power transmission technology will no doubt further advance the field of robotic endoscopy. Globally, health systems have become increasingly budget conscious; widespread acceptance of robotic endoscopy will depend on careful design to ensure its delivery of a cost effective service.
Collapse
|
34
|
Azkar Ul Hasan S, Jung Y, Kim S, Jung CL, Oh S, Kim J, Lim H. A Sensitivity Enhanced MWCNT/PDMS Tactile Sensor Using Micropillars and Low Energy Ar⁺ Ion Beam Treatment. SENSORS 2016; 16:s16010093. [PMID: 26771616 PMCID: PMC4732126 DOI: 10.3390/s16010093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Abstract
High sensitive flexible and wearable devices which can detect delicate touches have attracted considerable attentions from researchers for various promising applications. This research was aimed at enhancing the sensitivity of a MWCNT/PDMS piezoresistive tactile sensor through modification of its surface texture in the form of micropillars on MWCNT/PDMS film and subsequent low energy Ar+ ion beam treatment of the micropillars. The introduction of straight micropillars on the MWCNT/PDMS surface increased the sensitivity under gentle touch. Low energy ion beam treatment was performed to induce a stiff layer on the exposed surface of the micropillar structured MWCNT/PDMS film. The low energy ion bombardment stabilized the electrical properties of the MWCNT/PDMS surface and tuned the curvature of micropillars according to the treatment conditions. The straight micropillars which were treated by Ar+ ion with an incident angle of 0° demonstrated the enhanced sensitivity under normal pressure and the curved micropillars which were treated with Ar+ ion with an incident angle of 60° differentiated the direction of an applied shear pressure. The ion beam treatment on micropillar structured MWCNT/PDMS tactile sensors can thus be applied to reliable sensing under gentle touch with directional discrimination.
Collapse
Affiliation(s)
- Syed Azkar Ul Hasan
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
- Department of Nanobiotechnology, University of Science & Technology, Daejeon 34113, Korea.
| | - Youngdo Jung
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
| | - Seonggi Kim
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
| | - Cho-Long Jung
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
| | - Sunjong Oh
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
| | - Junhee Kim
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
| | - Hyuneui Lim
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
- Department of Nanobiotechnology, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
35
|
Romeo RA, Cordella F, Zollo L, Formica D, Saccomandi P, Schena E, Carpino G, Davalli A, Sacchetti R, Guglielmelli E. Development and preliminary testing of an instrumented object for force analysis during grasping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6720-3. [PMID: 26737835 DOI: 10.1109/embc.2015.7319935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper presents the design and realization of an instrumented object for force analysis during grasping. The object, with spherical shape, has been constructed with three contact areas in order to allow performing a tripod grasp. Force Sensing Resistor (FSR) sensors have been employed for normal force measurements, while an accelerometer has been used for slip detection. An electronic board for data acquisition has been embedded into the object, so that only the cables for power supply exit from it. Validation tests have been carried out for: (i) comparing the force measurements with a ground truth; (ii) assessing the capability of the accelerometer to detect slippage for different roughness values; (iii) evaluating object performance in grasp trials performed by a human subject.
Collapse
|
36
|
Abstract
Neuromorphic systems are used in variety of circumstances: as parts of sensory systems, for modeling parts of neural systems and for analog signal processing. In the sensory processing domain, neuromorphic systems can be considered in three parts: pre-transduction processing, transduction itself, and post-transduction processing. Neuromorphic systems include transducers for light, odors, and touch but so far neuromorphic applications in the sound domain have used standard microphones for transduction. We discuss why this is the case and describe what research has been done on neuromorphic approaches to transduction. We make a case for a change of direction toward systems where sound transduction itself has a neuromorphic component.
Collapse
Affiliation(s)
- Leslie S Smith
- Computing Science and Mathematics, University of Stirling Stirling, UK
| |
Collapse
|
37
|
Vallone N, Pizzo MC, Massaroni C, Saccomandi P, Silvestri S, Carassiti M, Mattei A, Schena E. Design and characterization of a measurement system for monitoring pressure exerted by bronchial blockers: In vitro trials. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1691-1694. [PMID: 26736602 DOI: 10.1109/embc.2015.7318702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bronchial blockers (BBs) allow occluding the bronchial duct and collapsing the "dependent" lung in a number of thoracic surgery. The occlusion is obtained through a cuff that, inflated with a proper air volume, exerts a pressure, Pe, on the inner wall of the mainstem bronchus. In this work a measurement chain, based on two piezorestistive force sensors, was developed and calibrated to measure Pe exerted by six BBs, as a function of inflated volume on in vitro models (two latex ducts with diameters similar to the ones of the adult mainstem bronchi: 12 mm and 15 mm). Pe showed wide changes considering different BBs, and significantly increases with the decrease of the model's diameter, at the same inflated volume. Lastly, the minimum occlusive volume (MOV) to sail the two models was estimated for each BB. These experiments were performed by applying a pressure difference across the cuff of 25 cmH2O, in order to simulate the worst condition in a clinical scenario. Results show that MOV depends on both the type of BB and the duct diameter. The knowledge of this volume allows estimating the minimum value of Pe exerted by BBs to avoid air leakage.
Collapse
|
38
|
Medical smart textiles based on fiber optic technology: an overview. J Funct Biomater 2015; 6:204-21. [PMID: 25871010 PMCID: PMC4493508 DOI: 10.3390/jfb6020204] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/25/2015] [Accepted: 04/09/2015] [Indexed: 11/17/2022] Open
Abstract
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.
Collapse
|