1
|
Ubah CB, Akem MU, Benjamin I, Edet HO, Adeyinka AS, Louis H. Heteroatoms chemical tailoring of aluminum nitrite nanotubes as biosensors for 5-hydroxyindole acetic acid (a biomarker for carcinoid tumors): insights from a computational study. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2024; 9:832-846. [DOI: 10.1039/d4me00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
This study aims to elucidate the properties of aluminum nitrite nanotubes (AlNNT) encapsulated with phosphorus (P@AlNNT), sulphur (S@AlNNT), and silicon (Si@AlNNT) heteroatoms for use as biosensors for 5-hydroxyindoleacetic acid (5HIAA).
Collapse
Affiliation(s)
- Chioma B. Ubah
- Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Martilda U. Akem
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | | | - Henry O. Edet
- Department of Biochemistry, Cross River University of Technology, Calabar, Nigeria
| | | | - Hitler Louis
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| |
Collapse
|
2
|
Huang S, Yang X, Liang X, Wu X, Yang C, Du J, Hou Y. Engineering a strong and stable ultraviolet chiroptical effect in a large-area chiral plasmonic shell. OPTICS EXPRESS 2022; 30:31486-31497. [PMID: 36242228 DOI: 10.1364/oe.468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Ultraviolet chiral metamaterials (UCM) are highly desired for their strong interaction with the intrinsic resonance of molecules and ability in manipulating the polarization state of high energy photons, but rarely reported to date due to their small feature size and complex geometry. Herein, we design and fabricate a kind of novel ultraviolet chiral plasmonic shell (UCPS) by combing the stepwise Al deposition and colloid-sphere assembled techniques. The cancellation effect originated from the disorder lattices of micro-domains in the colloid monolayer has been successfully overcome by optimizing the deposition parameters, and a strong CD signal of larger than 1 deg in the UV region is demonstrated both in simulation and experiment. This strong ultraviolet chiroptical resonances mainly come from the surface chiral lattice resonance mode, the whispering gallery mode and also the interaction between neighbor shells, and can be effectively tuned by changing structural parameters, for example, the sphere diameter, or even slightly increasing the deposition temperature in experiment. To improve the stability, the fabricated UCPSs are protected by N2 in the deposition chamber and then passivated by UV-ozone immediately after each deposition step. The formed UCPS show an excellent stability when exposing in the atmospheric environment. The computer-aided geometrical model, electromagnetic modes, and the tunable chiroptical resonance modes have been systematically investigated.
Collapse
|
3
|
Gauglitz G. Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal Bioanal Chem 2020; 412:3317-3349. [PMID: 32313998 PMCID: PMC7214504 DOI: 10.1007/s00216-020-02581-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Direct optical detection has proven to be a highly interesting tool in biomolecular interaction analysis to be used in drug discovery, ligand/receptor interactions, environmental analysis, clinical diagnostics, screening of large data volumes in immunology, cancer therapy, or personalized medicine. In this review, the fundamental optical principles and applications are reviewed. Devices are based on concepts such as refractometry, evanescent field, waveguides modes, reflectometry, resonance and/or interference. They are realized in ring resonators; prism couplers; surface plasmon resonance; resonant mirror; Bragg grating; grating couplers; photonic crystals, Mach-Zehnder, Young, Hartman interferometers; backscattering; ellipsometry; or reflectance interferometry. The physical theories of various optical principles have already been reviewed in detail elsewhere and are therefore only cited. This review provides an overall survey on the application of these methods in direct optical biosensing. The "historical" development of the main principles is given to understand the various, and sometimes only slightly modified variations published as "new" methods or the use of a new acronym and commercialization by different companies. Improvement of optics is only one way to increase the quality of biosensors. Additional essential aspects are the surface modification of transducers, immobilization strategies, selection of recognition elements, the influence of non-specific interaction, selectivity, and sensitivity. Furthermore, papers use for reporting minimal amounts of detectable analyte terms such as value of mass, moles, grams, or mol/L which are difficult to compare. Both these essential aspects (i.e., biochemistry and the presentation of LOD values) can be discussed only in brief (but references are provided) in order to prevent the paper from becoming too long. The review will concentrate on a comparison of the optical methods, their application, and the resulting bioanalytical quality.
Collapse
Affiliation(s)
- Günter Gauglitz
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Comparative Analysis on Dielectric Gold and Aluminium Triangular Junctions: Impact of Ionic Strength and Background Electrolyte by pH Variations. Sci Rep 2020; 10:6783. [PMID: 32321969 PMCID: PMC7176652 DOI: 10.1038/s41598-020-63831-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/27/2020] [Indexed: 11/23/2022] Open
Abstract
Field of generating a surface thin film is emerging broadly in sensing applications to obtain the quick and fast results by forming the high-performance sensors. Incorporation of thin film technologies in sensor development for the better sensing could be a promising way to attain the current requirements. This work predominantly delineates the fabrication of the dielectric sensor using two different sensing materials (Gold and Aluminium). Conventional photolithography was carried out using silicon as a base material and the photo mask of the dielectric sensor was designed by AutoCAD software. The physical characterization of the fabricated sensor was done by Scanning Electron Microscope, Atomic Force Microscope, High Power Microscope and 3D-nano profiler. The electrical characterization was performed using Keithley 6487 picoammeter with a linear sweep voltage of 0 to 2 V at 0.01 V step voltage. By pH scouting, I-V measurements on the bare sensor were carried out, whereby the gold electrodes conducts a least current than aluminium dielectrodes. Comparative analysis with pH scouting reveals that gold electrode is suitable under varied ionic strengths and background electrolytes, whereas aluminium electrodes were affected by the extreme acid (pH 1) and alkali (pH 12) solutions.
Collapse
|
5
|
Zhao ZJ, Hwang S, Bok M, Kang H, Jeon S, Park SH, Jeong JH. Nanopattern-Embedded Micropillar Structures for Security Identification. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30401-30410. [PMID: 31353886 DOI: 10.1021/acsami.9b07308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel method was developed for fabricating nanopatterns embedded on micropillar-structured surfaces using nanowelding technology for security identification. Commonly used substrates, that is, polyethylene films, glass wafers, Si wafers, and curved surfaces, were employed and their characteristics were evaluated. Cr was deposited onto the selected substrate to strengthen the adhesion force, and an adhesive layer of ultra-thin metal was deposited on top of the Cr layer. Lastly, nanopatterns were embedded on the substrates by nanowelding. The morphologies, cross sections, and three-dimensional (3D) images of the fabricated nanostructures were evaluated, and their crystalline structures and compositions were analyzed. Using the same method, nanopatterns embedded on micropillar-structured surfaces were fabricated for the first time as security patterns to improve security identification. The fabricated security patterns were characterized in three stages. First, micropillar structures and structural color were simply observed via optical microscopy to achieve a preliminary judgment. The appearance of structural color was due to the nanostructures fabricated on the micropillar surface. Next, the designed nanopatterns on the micropillar-structured surfaces were observed by scanning electron microscopy. Lastly, the changes in the spectral peaks were precisely observed using a spectrometer to achieve an enhanced security pattern. The fabricated security patterns can be suitable for valuable products, such as branded wines, watches, and bags. In addition, the proposed method offers a simple approach for transferring metal nanopatterns to common substrates. Moreover, the fabricated security patterns can have potential applications in semiconductor electrodes, transparent electrodes, and security identification codes.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - SoonHyoung Hwang
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Moonjeong Bok
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Hyeokjung Kang
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Sohee Jeon
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Sang-Hu Park
- School of Mechanical Engineering , Pusan National University , Busandaehak-ro 63beon-gil , Geumjeong-gu, Busan 609-735 , Republic of Korea
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| |
Collapse
|
6
|
Jiang Q, Ji C, Riley DJ, Xie F. Boosting the Efficiency of Photoelectrolysis by the Addition of Non-Noble Plasmonic Metals: Al & Cu. NANOMATERIALS 2018; 9:nano9010001. [PMID: 30577444 PMCID: PMC6359664 DOI: 10.3390/nano9010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 01/29/2023]
Abstract
Solar water splitting by semiconductor based photoanodes and photocathodes is one of the most promising strategies to convert solar energy to chemical energy to meet the high demand for energy consumption in modern society. However, the state-of-the-art efficiency is too low to fulfill the demand. To overcome this challenge and thus enable the industrial realization of a solar water splitting device, different approaches have been taken to enhance the overall device efficiency, one of which is the incorporation of plasmonic nanostructures. Photoanodes and photocathodes coupled to the optimized plasmonic nanostructures, matching the absorption wavelength of the semiconductors, can exhibit a significantly increased efficiency. So far, gold and silver have been extensively explored to plasmonically enhance water splitting efficiency, with disadvantages of high cost and low enhancement. Instead, non-noble plasmonic metals such as aluminum and copper, are earth-abundant and low cost. In this article, we review their potentials in photoelectrolysis, towards scalable applications.
Collapse
Affiliation(s)
- Qianfan Jiang
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| | - Chengyu Ji
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| | - D Jason Riley
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
7
|
Peltomaa R, Glahn-Martínez B, Benito-Peña E, Moreno-Bondi MC. Optical Biosensors for Label-Free Detection of Small Molecules. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4126. [PMID: 30477248 PMCID: PMC6308632 DOI: 10.3390/s18124126] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Label-free optical biosensors are an intriguing option for the analyses of many analytes, as they offer several advantages such as high sensitivity, direct and real-time measurement in addition to multiplexing capabilities. However, development of label-free optical biosensors for small molecules can be challenging as most of them are not naturally chromogenic or fluorescent, and in some cases, the sensor response is related to the size of the analyte. To overcome some of the limitations associated with the analysis of biologically, pharmacologically, or environmentally relevant compounds of low molecular weight, recent advances in the field have improved the detection of these analytes using outstanding methodology, instrumentation, recognition elements, or immobilization strategies. In this review, we aim to introduce some of the latest developments in the field of label-free optical biosensors with the focus on applications with novel innovations to overcome the challenges related to small molecule detection. Optical label-free methods with different transduction schemes, including evanescent wave and optical fiber sensors, surface plasmon resonance, surface-enhanced Raman spectroscopy, and interferometry, using various biorecognition elements, such as antibodies, aptamers, enzymes, and bioinspired molecularly imprinted polymers, are reviewed.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Bettina Glahn-Martínez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María C Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
8
|
|