1
|
Agnihotri TG, Gomte SS, Jain A. Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Drug Dev Ind Pharm 2022; 48:585-601. [PMID: 36448770 DOI: 10.1080/03639045.2022.2153862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Theranostics, encompassing diagnostics and therapeutics, has emerged as a critical component of cancer treatment. Metal-based theranostics is one such next-generation nanotechnology-based drug delivery system with a myriad of benefits in pre-clinical and clinical medication for the deadly diseases like cancer, where early detection can actually be life-saving. SIGNIFICANCE Metal theranostics have shown promising outcomes in terms of anticancer medication monitoring, targeted drug delivery, and simultaneous detection and treatment of early-stage cancer. METHODS For collection of literature data, different search engines including Google scholar, SciFinder, PubMed, ScienceDirect have been employed. With key words like, cancer, theranostics, metal nanoparticles relevant and appropriate data have been generated. RESULTS Noninvasive administration of the active drug is made possible by theranostics nanoparticulate systems' ability to aggregate at the tumor site and offer morphological and biochemical characteristics of the tumor site. The recent advancement of metal-based theranostics including metallic nanoparticles, metal oxides, metal sulfides, nanocomposites, etc. has been explored at length in this article. CONCLUSION The review highlights emerging applications in terms of molecular imaging, targeted therapy and different diagnostic approaches of metal theranostics. Possible challenges faced by nanotheranostics in terms of clinical immersion and toxicological aspects which need to be addressed at depth are also discussed at the end.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Bak S, Jeong Y, Yeu M, Jeong J. Brain-computer interface to predict impulse buying behavior using functional near-infrared spectroscopy. Sci Rep 2022; 12:18024. [PMID: 36289356 PMCID: PMC9606125 DOI: 10.1038/s41598-022-22653-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
As the rate of vaccination against COVID-19 is increasing, demand for overseas travel is also increasing. Despite people's preference for duty-free shopping, previous studies reported that duty-free shopping increases impulse buying behavior. There are also self-reported tools to measure their impulse buying behavior, but it has the disadvantage of relying on the human memory and perception. Therefore, we propose a Brain-Computer Interface (BCI)-based brain signal processing methodology to supplement these limitations and to reduce ambiguity and conjecture of data. To achieve this goal, we focused on the brain's prefrontal cortex (PFC) activity, which supervises human decision-making and is closely related to impulse buying behavior. The PFC activation is observed by recording signals using a functional near-infrared spectroscopy (fNIRS) while inducing impulse buying behavior in virtual computing environments. We found that impulse buying behaviors were not only higher in online duty-free shops than in online regular stores, but the fNIRS signals were also different on the two sites. We also achieved an average accuracy of 93.78% in detecting impulse buying patterns using a support vector machine. These results were identical to the people's self-reported responses. This study provides evidence as a potential biomarker for detecting impulse buying behavior with fNIRS.
Collapse
Affiliation(s)
- SuJin Bak
- grid.222754.40000 0001 0840 2678Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841 South Korea
| | - Yunjoo Jeong
- grid.222754.40000 0001 0840 2678Center for Research in Marketing in School of Business at Korea University, Seoul, 02841 South Korea
| | - Minsun Yeu
- grid.267370.70000 0004 0533 4667College of Business Administration, University of Ulsan, Ulsan, 44610 South Korea
| | - Jichai Jeong
- grid.222754.40000 0001 0840 2678Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841 South Korea
| |
Collapse
|
3
|
Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol 2022; 27:525-544. [DOI: 10.1080/10837450.2022.2084554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadra Yaddollahi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
- Medicinal Plant Research Center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Iran, Amol.
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutical Research laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
4
|
Bukhari SI, Imam SS, Ahmad MZ, Vuddanda PR, Alshehri S, Mahdi WA, Ahmad J. Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges. Pharmaceutics 2021; 13:840. [PMID: 34200251 PMCID: PMC8226834 DOI: 10.3390/pharmaceutics13060840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the major leading causes of mortality in the world. The implication of nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently address various difficulties associated with conventional drug delivery systems such as non-specific biodistribution, poor efficacy, and the possibility of occurrence of multi-drug resistance. Amongst a plethora of nanocarriers for drugs, this review emphasized lipidic nanocarrier systems for delivering anticancer therapeutics because of their biocompatibility, safety, high drug loading and capability to simultaneously carrying imaging agent and ligands as well. Furthermore, to date, the lack of interaction between diagnosis and treatment has hampered the efforts of the nanotherapeutic approach alone to deal with cancer effectively. Therefore, a novel paradigm with concomitant imaging (with contrasting agents), targeting (with biomarkers), and anticancer agent being delivered in one lipidic nanocarrier system (as cancer theranostics) seems to be very promising in overcoming various hurdles in effective cancer treatment. The major obstacles that are supposed to be addressed by employing lipidic theranostic nanomedicine include nanomedicine reach to tumor cells, drug internalization in cancer cells for therapeutic intervention, off-site drug distribution, and uptake via the host immune system. A comprehensive account of recent research updates in the field of lipidic nanocarrier loaded with therapeutic and diagnostic agents is covered in the present article. Nevertheless, there are notable hurdles in the clinical translation of the lipidic theranostic nanomedicines, which are also highlighted in the present review along with plausible countermeasures.
Collapse
Affiliation(s)
- Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Parameswara Rao Vuddanda
- Research Centre for Topical Drug Delivery and Toxicology (TDDT), University of Hertfordshire, Hertfordshire AL10 9AB, UK;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
5
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
6
|
Schoppe O, Pan C, Coronel J, Mai H, Rong Z, Todorov MI, Müskes A, Navarro F, Li H, Ertürk A, Menze BH. Deep learning-enabled multi-organ segmentation in whole-body mouse scans. Nat Commun 2020; 11:5626. [PMID: 33159057 PMCID: PMC7648799 DOI: 10.1038/s41467-020-19449-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
Whole-body imaging of mice is a key source of information for research. Organ segmentation is a prerequisite for quantitative analysis but is a tedious and error-prone task if done manually. Here, we present a deep learning solution called AIMOS that automatically segments major organs (brain, lungs, heart, liver, kidneys, spleen, bladder, stomach, intestine) and the skeleton in less than a second, orders of magnitude faster than prior algorithms. AIMOS matches or exceeds the segmentation quality of state-of-the-art approaches and of human experts. We exemplify direct applicability for biomedical research for localizing cancer metastases. Furthermore, we show that expert annotations are subject to human error and bias. As a consequence, we show that at least two independently created annotations are needed to assess model performance. Importantly, AIMOS addresses the issue of human bias by identifying the regions where humans are most likely to disagree, and thereby localizes and quantifies this uncertainty for improved downstream analysis. In summary, AIMOS is a powerful open-source tool to increase scalability, reduce bias, and foster reproducibility in many areas of biomedical research.
Collapse
Affiliation(s)
- Oliver Schoppe
- Department of Informatics, Technical University of Munich, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Chenchen Pan
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | - Javier Coronel
- Department of Informatics, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | - Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | - Mihail Ivilinov Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Annemarie Müskes
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Fernando Navarro
- Department of Informatics, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hongwei Li
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany.
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Bjoern H Menze
- Department of Informatics, Technical University of Munich, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- Institute for Advanced Study, Department of Informatics, Technical University of Munich, Munich, Germany.
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Chen S, Wang J, Xin B, Yang Y, Ma Y, Zhou Y, Yuan L, Huang Z, Yuan Q. Direct Observation of Nanoparticles within Cells at Subcellular Levels by Super-Resolution Fluorescence Imaging. Anal Chem 2019; 91:5747-5752. [PMID: 30938156 DOI: 10.1021/acs.analchem.8b05919] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Direct observation of nanoparticles with high spatial resolution at subcellular levels is of great importance to understand the nanotoxicology and promote the biomedical applications of nanoparticles. Super-resolution fluorescence microscopy can break the diffraction resolution limit to achieve spatial resolution of tens of nanometers, making it ideal for highly accurate observation of nanoparticles in the cellular world. In this study, we introduced the employment of super-resolution fluorescence imaging for monitoring nanoparticles within cells. Carbocyanine dyes Alexa Flour 647 labeled mesoporous silica nanoparticles (designated as MSNs-AF647) were constructed as the super-resolution imaging nanoplatform in this work as proof of concept. The MSNs-AF647 were incubated with Hela cells, and the nanoparticles within cells were further monitored by super-resolution fluorescence microscopy. The fluorescence images of MSNs-AF647 within cells captured with the super-resolution fluorescence microscopy showed a much higher spatial resolution than that obtained using conventional fluorescence microscopy, showing that super-resolution fluorescence images can provide more accurate information to locate the nanoparticles at the subcellular levels. Moreover, other functional molecules can be easily loaded into the MSNs-AF647 super-resolution imaging nanoplatform, which suggested that super-resolution fluorescence imaging can further be applied to various bioimaging-related areas, such as imaging-guided therapy, with the aid of the MSNs-AF647 nanoplatform. This study demonstrates that super-resolution fluorescence microscopy offers a highly accurate method to study nanoparticles in the cellular world. We anticipate this strategy may further be applied to research areas such as studying the nanotoxicology and optimization of nanoparticle-based bioprobes or drugs by designing new nanostructured materials with multifunctional properties based on MSNs-AF647.
Collapse
Affiliation(s)
- Shasha Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Bo Xin
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - Yanbing Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Yurou Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Yu Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Liangjie Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Zhenli Huang
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| |
Collapse
|