1
|
Yu W, Li Q, Ren J, Feng K, Gong J, Li Z, Zhang J, Liu X, Xu Z, Yang L. A sensor platform based on SERS detection/janus textile for sweat glucose and lactate analysis toward portable monitoring of wellness status. Biosens Bioelectron 2024; 263:116612. [PMID: 39096763 DOI: 10.1016/j.bios.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Herein we report a wearable sweat sensor of a Janus fabric based on surface enhanced Raman scattering (SERS) technology, mainly detecting the two important metabolites glucose and lactate. Janus fabric is composed of electrospinning PU on a piece of medical gauze (cotton), working as the unidirectional moisture transport component (R = 1305%) to collect and transfer sweat efficiently. SERS tags with different structures act as the probe to recognize and detect the glucose and lactate in high sensitivity. Core-shell structured gold nanorods with DTNB inside (AuNRs@DTNB@Au) are used to detect lactate, while gold nanorods with MPBA (AuNRs@MPBA) are used to detect glucose. Through the characteristic SERS information, two calibration functions were established for the concentration determination of glucose and lactate. The concentrations of glucose and lactate in sweat of a 23 years volunteer during three-stage interval running are tested to be 95.5, 53.2, 30.5 μM and 4.9, 13.9, 10.8 mM, indicating the glucose (energy) consumption during exercise and the rapid accumulation of lactate at the early stage accompanied by the subsequent relief. As expected, this sensing system is able to provide a novel strategy for effective acquisition and rapid detection of essential biomarkers in sweat.
Collapse
Affiliation(s)
- Wenze Yu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China.
| | - Jianing Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Kexin Feng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Shandong, Qingdao, 266071, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Zhiwei Xu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Li Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Tian F, de Carvalho LFDCES, Casey A, Nogueira MS, Byrne HJ. Surface-Enhanced Raman Analysis of Uric Acid and Hypoxanthine Analysis in Fractionated Bodily Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1216. [PMID: 37049309 PMCID: PMC10097234 DOI: 10.3390/nano13071216] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the disease burden of hyperuricemia has been increasing, especially in high-income countries and the economically developing world with a Western lifestyle. Abnormal levels of uric acid and hypoxanthine are associated with many diseases, and therefore, to demonstrate improved methods of uric acid and hypoxanthine detection, three different bodily fluids were analysed using surface-enhanced Raman spectroscopy (SERS) and high-performance liquid chromatography (HPLC). Gold nanostar suspensions were mixed with series dilutions of uric acid and hypoxanthine, 3 kDa centrifugally filtered human blood serum, urine and saliva. The results show that gold nanostars enable the quantitative detection of the concentration of uric acid and hypoxanthine in the range 5-50 μg/mL and 50-250 ng/mL, respectively. The peak areas of HPLC and maximum peak intensity of SERS have strongly correlated, notably with the peaks of uric acid and hypoxanthine at 1000 and 640 cm-1, respectively. The r2 is 0.975 and 0.959 for uric acid and hypoxanthine, respectively. Each of the three body fluids has a number of spectral features in common with uric acid and hypoxanthine. The large overlap of the spectral bands of the SERS of uric acid against three body fluids at spectra peaks were at 442, 712, 802, 1000, 1086, 1206, 1343, 1436 and 1560 cm-1. The features at 560, 640, 803, 1206, 1290 and 1620 cm-1 from hypoxanthine were common to serum, saliva and urine. There is no statistical difference between HPLC and SERS for determination of the concentration of uric acid and hypoxanthine (p > 0.05). For clinical applications, 3 kDa centrifugal filtration followed by SERS can be used for uric acid and hypoxanthine screening is, which can be used to reveal the subtle abnormalities enhancing the great potential of vibrational spectroscopy as an analytical tool. Our work supports the hypnosis that it is possible to obtain the specific concentration of uric acid and hypoxanthine by comparing the SER signals of serum, saliva and urine. In the future, the analysis of other biofluids can be employed to detect biomarkers for the diagnosis of systemic pathologies.
Collapse
Affiliation(s)
- Furong Tian
- FOCAS Research Institute, Technological University Dublin Camden Row, D08CKP1 Dublin, Ireland; (A.C.)
| | - Luis Felipe das Chagas e Silva de Carvalho
- FOCAS Research Institute, Technological University Dublin Camden Row, D08CKP1 Dublin, Ireland; (A.C.)
- Centro Universitario Braz Cubas, Mogi das Cruzes 08773-380, Brazil
- Universidade de Taubate, Taubate 12080-000, Brazil
| | - Alan Casey
- FOCAS Research Institute, Technological University Dublin Camden Row, D08CKP1 Dublin, Ireland; (A.C.)
| | - Marcelo Saito Nogueira
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, T12R5CP Cork, Ireland;
- Department of Physics, University College Cork, College Road, T12K8AF Cork, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin Camden Row, D08CKP1 Dublin, Ireland; (A.C.)
| |
Collapse
|
3
|
Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves. BIOSENSORS 2022; 12:bios12060399. [PMID: 35735547 PMCID: PMC9221473 DOI: 10.3390/bios12060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
As a basis for biometric and chemical analysis, issues of how to dilute or concentrate substances such as particles or cells to specific concentrations have long been of interest to researchers. In this study, travelling surface acoustic wave (TSAW)-based devices with three frequencies (99.1, 48.8, 20.4 MHz) have been used to capture the suspended Polystyrene (PS) microspheres of various sizes (5, 20, 40 μm) in sessile droplets, which are controlled by acoustic field-induced fluid vortex (acoustic vortex) and aggregate into clusters or rings with particles. These phenomena can be explained by the interaction of three forces, which are drag force caused by ASF, ARF caused by Leaky-SAW and varying centrifugal force. Eventually, a novel approach of free transition between the particle ring and cluster was approached via modulating the acoustic amplitude of TSAW. By this method, multilayer particles agglomerate with 20 μm wrapped around 40 μm and 20 μm wrapped around 5 μm can be obtained, which provides the possibility to dilute or concentrate the particles to a specific concentration.
Collapse
|
4
|
Allakhverdiev ES, Khabatova VV, Kossalbayev BD, Zadneprovskaya EV, Rodnenkov OV, Martynyuk TV, Maksimov GV, Alwasel S, Tomo T, Allakhverdiev SI. Raman Spectroscopy and Its Modifications Applied to Biological and Medical Research. Cells 2022; 11:cells11030386. [PMID: 35159196 PMCID: PMC8834270 DOI: 10.3390/cells11030386] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, there is an interest in biomedical and nanobiotechnological studies, such as studies on carotenoids as antioxidants and studies on molecular markers for cardiovascular, endocrine, and oncological diseases. Moreover, interest in industrial production of microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of synthesis and accumulation of valuable biomolecules in algal cells. Biomolecules such as neutral lipids and carotenoids are being actively explored by the biotechnology community. Raman spectroscopy (RS) has become an important tool for researchers to understand biological processes at the cellular level in medicine and biotechnology. This review provides a brief analysis of existing studies on the application of RS for investigation of biological, medical, analytical, photosynthetic, and algal research, particularly to understand how the technique can be used for lipids, carotenoids, and cellular research. First, the review article shows the main applications of the modified Raman spectroscopy in medicine and biotechnology. Research works in the field of medicine and biotechnology are analysed in terms of showing the common connections of some studies as caretenoids and lipids. Second, this article summarises some of the recent advances in Raman microspectroscopy applications in areas related to microalgal detection. Strategies based on Raman spectroscopy provide potential for biochemical-composition analysis and imaging of living microalgal cells, in situ and in vivo. Finally, current approaches used in the papers presented show the advantages, perspectives, and other essential specifics of the method applied to plants and other species/objects.
Collapse
Affiliation(s)
- Elvin S. Allakhverdiev
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
| | - Venera V. Khabatova
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Bekzhan D. Kossalbayev
- Geology and Oil-gas Business Institute Named after K. Turyssov, Satbayev University, Satpaeva, 22, Almaty 050043, Kazakhstan;
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050038, Kazakhstan
| | - Elena V. Zadneprovskaya
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Oleg V. Rodnenkov
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Tamila V. Martynyuk
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Georgy V. Maksimov
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
- Department of Physical Materials Science, Technological University “MISiS”, Leninskiy Prospekt 4, Office 626, 119049 Moscow, Russia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan;
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Nikelshparg EI, Baizhumanov AA, Bochkova ZV, Novikov SM, Yakubovsky DI, Arsenin AV, Volkov VS, Goodilin EA, Semenova AA, Sosnovtseva O, Maksimov GV, Brazhe NA. Detection of Hypertension-Induced Changes in Erythrocytes by SERS Nanosensors. BIOSENSORS 2022; 12:32. [PMID: 35049660 PMCID: PMC8773528 DOI: 10.3390/bios12010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 05/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a promising tool that can be used in the detection of molecular changes triggered by disease development. Cardiovascular diseases (CVDs) are caused by multiple pathologies originating at the cellular level. The identification of these deteriorations can provide a better understanding of CVD mechanisms, and the monitoring of the identified molecular changes can be employed in the development of novel biosensor tools for early diagnostics. We applied plasmonic SERS nanosensors to assess changes in the properties of erythrocytes under normotensive and hypertensive conditions in the animal model. We found that spontaneous hypertension in rats leads (i) to a decrease in the erythrocyte plasma membrane fluidity and (ii) to a decrease in the mobility of the heme of the membrane-bound hemoglobin. We identified SERS parameters that can be used to detect pathological changes in the plasma membrane and submembrane region of erythrocytes.
Collapse
Affiliation(s)
- Evelina I. Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
| | - Adil A. Baizhumanov
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
| | - Zhanna V. Bochkova
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
| | - Sergey M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 141700 Dolgoprudny, Russia; (S.M.N.); (D.I.Y.); (A.V.A.); (V.S.V.)
| | - Dmitry I. Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 141700 Dolgoprudny, Russia; (S.M.N.); (D.I.Y.); (A.V.A.); (V.S.V.)
| | - Aleksey V. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 141700 Dolgoprudny, Russia; (S.M.N.); (D.I.Y.); (A.V.A.); (V.S.V.)
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 141700 Dolgoprudny, Russia; (S.M.N.); (D.I.Y.); (A.V.A.); (V.S.V.)
| | - Eugene A. Goodilin
- Faculty of Materials Sciences, Moscow State University, 119991 Moscow, Russia; (E.A.G.); (A.A.S.)
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Anna A. Semenova
- Faculty of Materials Sciences, Moscow State University, 119991 Moscow, Russia; (E.A.G.); (A.A.S.)
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Georgy V. Maksimov
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
- Department of Physical Material Engineering, Federal State Autonomous Educational Institution of Higher Education “National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Nadezda A. Brazhe
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; (A.A.B.); (Z.V.B.); (G.V.M.)
| |
Collapse
|
6
|
Lu Y, Lin L, Ye J. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater Today Bio 2022; 13:100205. [PMID: 35118368 PMCID: PMC8792281 DOI: 10.1016/j.mtbio.2022.100205] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Metabolites are important biomarkers in human body fluids, conveying direct information of cellular activities and physical conditions. Metabolite detection has long been a research hotspot in the field of biology and medicine. Surface-enhanced Raman spectroscopy (SERS), based on the molecular “fingerprint” of Raman spectrum and the enormous signal enhancement (down to a single-molecule level) by plasmonic nanomaterials, has proven to be a novel and powerful tool for metabolite detection. SERS provides favorable properties such as ultra-sensitive, label-free, rapid, specific, and non-destructive detection processes. In this review, we summarized the progress in recent 10 years on SERS-based sensing of endogenous metabolites at the cellular level, in tissues, and in biofluids, as well as drug metabolites in biofluids. We made detailed discussions on the challenges and optimization methods of SERS technique in metabolite detection. The combination of SERS with modern biomedical technology were also anticipated.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Lin
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Corresponding author.
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Corresponding author. State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
7
|
Olaetxea I, Valero A, Lopez E, Lafuente H, Izeta A, Jaunarena I, Seifert A. Machine Learning-Assisted Raman Spectroscopy for pH and Lactate Sensing in Body Fluids. Anal Chem 2020; 92:13888-13895. [PMID: 32985871 DOI: 10.1021/acs.analchem.0c02625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study presents the combination of Raman spectroscopy with machine learning algorithms as a prospective diagnostic tool capable of detecting and monitoring relevant variations of pH and lactate as recognized biomarkers of several pathologies. The applicability of the method proposed here is tested both in vitro and ex vivo. In a first step, Raman spectra of aqueous solutions are evaluated for the identification of characteristic patterns resulting from changes in pH or in the concentration of lactate. The method is further validated with blood and plasma samples. Principal component analysis is used to highlight the relevant features that differentiate the Raman spectra regarding their pH and concentration of lactate. Partial least squares regression models are developed to capture and model the spectral variability of the Raman spectra. The performance of these predictive regression models is demonstrated by clinically accurate predictions of pH and lactate from unknown samples in the physiologically relevant range. These results prove the potential of our method to develop a noninvasive technology, based on Raman spectroscopy, for continuous monitoring of pH and lactate in vivo.
Collapse
Affiliation(s)
- Ion Olaetxea
- Nanoengineering Group, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain.,PhD Student, Department of Communications Engineering, University of the Basque Country (UPV/EHU), Torres Quevedo Ingeniaria Plaza 1, 48013 Bilbao, Spain
| | - Ana Valero
- Nanoengineering Group, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
| | - Eneko Lopez
- Nanoengineering Group, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
| | - Héctor Lafuente
- Tissue Engineering, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014 San Sebastián, Spain
| | - Ander Izeta
- Tissue Engineering, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014 San Sebastián, Spain
| | - Ibon Jaunarena
- Obstetrics and Gynaecology, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014 San Sebastián, Spain.,Donostia University Hospital, Begiristain Doktorea Pasealekua, 20014 San Sebastián, Spain
| | - Andreas Seifert
- Nanoengineering Group, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Mauriz E. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids. BIOSENSORS-BASEL 2020; 10:bios10060063. [PMID: 32531908 PMCID: PMC7345924 DOI: 10.3390/bios10060063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
The monitoring of biomarkers in body fluids provides valuable prognostic information regarding disease onset and progression. Most biosensing approaches use noninvasive screening tools and are conducted in order to improve early clinical diagnosis. However, biofouling of the sensing surface may disturb the quantification of circulating biomarkers in complex biological fluids. Thus, there is a great need for antifouling interfaces to be designed in order to reduce nonspecific adsorption and prevent inactivation of biological receptors and loss of sensitivity. To address these limitations and enable their application in clinical practice, a variety of plasmonic platforms have been recently developed for biomarker analysis in easily accessible biological fluids. This review presents an overview of the latest advances in the design of antifouling strategies for the detection of clinically relevant biomarkers on the basis of the characteristics of biological samples. The impact of nanoplasmonic biosensors as point-of-care devices has been examined for a wide range of biomarkers associated with cancer, inflammatory, infectious and neurodegenerative diseases. Clinical applications in readily obtainable biofluids such as blood, saliva, urine, tears and cerebrospinal and synovial fluids, covering almost the whole range of plasmonic applications, from surface plasmon resonance (SPR) to surface-enhanced Raman scattering (SERS), are also discussed.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain;
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| |
Collapse
|