1
|
Sha P, Zhu C, Wang T, Dong P, Wu X. Detection and Identification of Pesticides in Fruits Coupling to an Au-Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:717. [PMID: 38668211 PMCID: PMC11053652 DOI: 10.3390/nano14080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
In this research, a method was developed for fabricating Au-Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of surface-enhanced Raman scattering (SERS) hot spots on the substrate, thereby elevating the SERS performance beyond that of substrates composed solely of an Au nanorod. Calculations using the finite difference time domain method confirmed the generation of a strong electromagnetic field around the nanoparticles. Motivated by the electromotive force, Au ions in the chloroauric acid solution were reduced to form nanostructures on the nanorod array. The size and distribution density of these granular nanostructures could be modulated by varying the reaction time and the concentration of chloroauric acid. The resulting Au-Au nanorod array substrate exhibited an active, uniform, and reproducible SERS effect. With 1,2-bis(4-pyridyl)ethylene as the probe molecule, the detection sensitivity of the Au-Au nanorod array substrate was enhanced to 10-11 M, improving by five orders of magnitude over the substrate consisting only of an Au nanorod array. For a practical application, this substrate was utilized for the detection of pesticides, including thiram, thiabendazole, carbendazim, and phosmet, within the concentration range of 10-4 to 5 × 10-7 M. An analytical model combining a random forest and a one-dimensional convolutional neural network, referring to the important variable-one-dimensional convolutional neural network model, was developed for the precise identification of thiram. This approach demonstrated significant potential for biochemical sensing and rapid on-site identification.
Collapse
Affiliation(s)
| | | | | | - Peitao Dong
- Colleage of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | | |
Collapse
|
2
|
Dzhagan V, Mazur N, Kapush O, Skoryk M, Pirko Y, Yemets A, Dzhahan V, Shepeliavyi P, Valakh M, Yukhymchuk V. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots. ACS OMEGA 2024; 9:4819-4830. [PMID: 38313516 PMCID: PMC10832017 DOI: 10.1021/acsomega.3c08393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
One of the requirements of an efficient surface-enhanced Raman spectroscopy (SERS) substrate is a developed surface morphology with a high density of "hot spots", nm-scale spacings between plasmonic nanoparticles. Of particular interest are plasmonic architectures that could enable self-localization (enrichment) of the analyte in the hot spots. We report a straightforward method of fabrication of efficient SERS substrates that comply with these requirements. The basis of the substrate is a large-area film of tightly packed SiO2 spheres formed by their quick self-assembling upon drop casting from the solution. Thermally evaporated thin Ag layer is converted by quick thermal annealing into nanoparticles (NPs) self-assembled in the trenches between the silica spheres, i.e., in the places where the analyte molecules get localized upon deposition from solution and drying. Therefore, the obtained substrate morphology enables an efficient enrichment of the analyte in the hot spots formed by the densely arranged plasmonic NPs. The high efficiency of the developed SERS substrates is demonstrated by the detection of Rhodamine 6G down to 10-13 mol/L with an enhancement factor of ∼108, as well as the detection of low concentrations of various nonresonant analytes, both small dye molecules and large biomolecules. The developed approach to SERS substrates is very straightforward for implementation and can be further extended to using gold or other plasmonic NPs.
Collapse
Affiliation(s)
- Volodymyr Dzhagan
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Nazar Mazur
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Olga Kapush
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Mykola Skoryk
- G. V.
Kurdyumov Institute for Metal Physics, National
Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| | - Yaroslav Pirko
- Institute
of Food Biotechnology and Genomics, National
Academy of Sciences of Ukraine, Kyiv 04123, Ukraine
| | - Alla Yemets
- Institute
of Food Biotechnology and Genomics, National
Academy of Sciences of Ukraine, Kyiv 04123, Ukraine
| | - Vladyslav Dzhahan
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Petro Shepeliavyi
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Mykhailo Valakh
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Volodymyr Yukhymchuk
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| |
Collapse
|
3
|
Liu B, Duan H, Liu Z, Liu Y, Chu H. DNA-functionalized metal or metal-containing nanoparticles for biological applications. Dalton Trans 2024; 53:839-850. [PMID: 38108230 DOI: 10.1039/d3dt03614f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The conjugation of DNA molecules with metal or metal-containing nanoparticles (M/MC NPs) has resulted in a number of new hybrid materials, enabling a diverse range of novel biological applications in nanomaterial assembly, biosensor development, and drug/gene delivery. In such materials, the molecular recognition, gene therapeutic, and structure-directing functions of DNA molecules are coupled with M/MC NPs. In turn, the M/MC NPs have optical, catalytic, pore structure, or photodynamic/photothermal properties, which are beneficial for sensing, theranostic, and drug loading applications. This review focuses on the different DNA functionalization protocols available for M/MC NPs, including gold NPs, upconversion NPs, metal-organic frameworks, metal oxide NPs and quantum dots. The biological applications of DNA-functionalized M/MC NPs in the treatment or diagnosis of cancers are discussed in detail.
Collapse
Affiliation(s)
- Bei Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
| | - Zechao Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yuechen Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
| |
Collapse
|
4
|
Xu Y, Zhang X, Zhu XS, Shi YW. Surface-Enhanced Raman Scattering in Silver-Coated Suspended-Core Fiber. SENSORS (BASEL, SWITZERLAND) 2023; 24:160. [PMID: 38203021 PMCID: PMC10781242 DOI: 10.3390/s24010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
In this paper, the silver-coated large-core suspended-core fiber (LSCF) probe was fabricated by the dynamic chemical liquid phase deposition method for surface-enhanced Raman scattering (SERS) sensing. The 4-mercaptophenylboronic acid (4-MPBA) monolayer was assembled in the LSCF as the recognition monolayer. Taking advantage of the appropriate core size of the LSCF, a custom-made Y-type optical fiber patch cable was utilized to connect the semiconductor laser, Raman spectrometer, and the proposed fiber SERS probe. The SERS signal is propagated in the silver-coated air channels, which can effectively reduce the Raman and fluorescence background of the silica core. Experiments were performed to measure the Raman scattering spectra of the 4-MPBA in the silver-coated LSCF in a non-enhanced and enhanced case. The experiment results showed that the Raman signal strength was enhanced more than 6 times by the surface plasmon resonance compared with the non-enhanced case. The proposed LSCF for SERS sensing technology provides huge research value for the fiber SERS probes in biomedicine and environmental science. The combination of SERS and microstructured optical fibers offers a potential approach for SERS detection.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Information Science and Engineering, Fudan University, 220 Handan Rd, Shanghai 200433, China; (Y.X.); (X.Z.); (Y.-W.S.)
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City 322000, China
| | - Xian Zhang
- School of Information Science and Engineering, Fudan University, 220 Handan Rd, Shanghai 200433, China; (Y.X.); (X.Z.); (Y.-W.S.)
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City 322000, China
| | - Xiao-Song Zhu
- School of Information Science and Engineering, Fudan University, 220 Handan Rd, Shanghai 200433, China; (Y.X.); (X.Z.); (Y.-W.S.)
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City 322000, China
- Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, 220 Handan Rd, Shanghai 200433, China
| | - Yi-Wei Shi
- School of Information Science and Engineering, Fudan University, 220 Handan Rd, Shanghai 200433, China; (Y.X.); (X.Z.); (Y.-W.S.)
- Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, 220 Handan Rd, Shanghai 200433, China
| |
Collapse
|
5
|
Lipateva T, Lipatiev A, Lotarev S, Shakhgildyan G, Fedotov S, Sigaev V. One-Stage Femtosecond Laser-Assisted Deposition of Gold Micropatterns on Dielectric Substrate. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6867. [PMID: 36234209 PMCID: PMC9571280 DOI: 10.3390/ma15196867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this study, a simple one-stage laser-assisted metallization technique based on laser-induced backside wet etching and laser-induced chemical liquid-phase deposition is proposed. It allows for the fabrication of gold micropatterns inside the laser-written trace on a glass substrate. The reduction and deposition of gold inside and outside the laser-ablated channel were confirmed. The presence of Au nanoparticles on the surface of the laser-written micropattern is revealed by atomic force microscopy. The specific resistivity of the gold trace formed by ultrafast light-assisted metal micropatterning on a dielectric glass substrate is estimated as 0.04 ± 0.02 mΩ·cm. The obtained results empower the method of the selective laser-assisted deposition of metals on dielectrics and are of interest for the development of microelectronic components and catalysts, heaters, and sensors for lab-on-a-chip devices.
Collapse
|
6
|
Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. BIOSENSORS 2022; 12:bios12080581. [PMID: 36004978 PMCID: PMC9406156 DOI: 10.3390/bios12080581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Currently, several biosensors are reported to confirm the absence/presence of an abnormal level of specific human biomarkers in research laboratories. Unfortunately, public marketing and/or pharmacy accessibility are not yet possible for many bodily fluid biomarkers. The questions are numerous, starting from the preparation of the substrates, the wet/dry form of recognizing the (bio)ligands, the exposure time, and the choice of the running buffers. In this context, for the first time, the present overview summarizes the pre-functionalization of standard and nanostructured solid/flexible supports with cysteamine (Cys) and glutaraldehyde (GA) chemicals for robust protein immobilization and detection of biomarkers in body fluids (serum, saliva, and urine) using three transductions: piezoelectrical, electrochemical, and optical, respectively. Thus, the reader can easily access and compare step-by-step conjugate protocols published over the past 10 years. In conclusion, Cys/GA chemistry seems widely used for electrochemical sensing applications with different types of recorded signals, either current, potential, or impedance. On the other hand, piezoelectric detection via quartz crystal microbalance (QCM) and optical detection by surface plasmon resonance (LSPR)/surface-enhanced Raman spectroscopy (SERS) are ultrasensitive platforms and very good candidates for the miniaturization of medical devices in the near future.
Collapse
|
7
|
Sha P, Su Q, Dong P, Wang T, Zhu C, Gao W, Wu X. Fabrication of Ag@Au (core@shell) nanorods as a SERS substrate by the oblique angle deposition process and sputtering technology. RSC Adv 2021; 11:27107-27114. [PMID: 35480685 PMCID: PMC9037617 DOI: 10.1039/d1ra04709d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Gold (Au) and silver (Ag) are the main materials exhibiting strong Surface-Enhanced Raman Scattering (SERS) effects. The Ag nano-rods (AgNRs) and Au nano-rods (AuNRs) SERS substrates prepared using the technology of the oblique angle deposition (OAD) process have received considerable attention in recent years because of their rapid preparation process and good repeatability. However, AgNR substrates are unstable due to the low chemical stability of Ag. To overcome these limitations, an Ag@Au core-shell nano-rod (NR) array SERS substrate was fabricated using the OAD process and sputtering technology. Moreover, simulation analysis was performed using finite-difference time-domain calculations to evaluate the enhancement mechanism of the Ag@Au NR array substrate. Based on the simulation results and actual process conditions, the Ag@Au core-shell NR array substrate with the Au shell thickness of 20 nm was studied. To characterize the substrate's SERS performance, 1,2-bis(4-pyridyl)ethylene (BPE) was used as the Raman probe. The limit of detection of BPE could reach 10-12 M. The Ag@Au NR array substrate demonstrated uniformity with an acceptable relative standard deviation. Despite the strong oxidation of the hydrogen peroxide (H2O2) solution, the Ag@Au NR array substrate maintains good chemical stability and SERS performance. And long-term stability of the Ag@Au NR substrate was observed over 8 months of storage time. Our results show the successful preparation of a highly sensitive, repeatable and stable substrate. Furthermore, this substrate proves great potential in the field of biochemical sensing.
Collapse
Affiliation(s)
- Pengxing Sha
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Qingqing Su
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Weiye Gao
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| |
Collapse
|
8
|
Lodeiro C, Capelo-Martínez JL, Santos HM, Oliveira E. Impacts of environmental issues on health and well-being: a global pollution challenge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18309-18313. [PMID: 32761527 PMCID: PMC7406868 DOI: 10.1007/s11356-020-10265-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Every 2 years, the environmental, chemical, and health research communities meet in Costa de Caparica, Portugal to showcase the latest technologies, methodologies and research advances in pollution detection, contamination control, remediation, and related health issues. Since its inception in 2015, the International Caparica Conference on Pollution Metal Ions and Molecules (PTIM) has become a biennial global forum to hear from those who protect the land, the water, and the air at all environmental scales. During past PTIM editions, we have learned about numerous efforts to develop new recovery and clean-up processes to restore the natural equilibria of our planet. Soil, land, water, and air are the key focus of efforts that will require deeper understanding and better control.
Collapse
Affiliation(s)
- Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal
- ProteoMass Scientific Society. Madan Park, Rúa dos Inventores, 2825-182 Caparica, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal
- ProteoMass Scientific Society. Madan Park, Rúa dos Inventores, 2825-182 Caparica, Portugal
| | - Hugo M. Santos
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal
- ProteoMass Scientific Society. Madan Park, Rúa dos Inventores, 2825-182 Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal
- ProteoMass Scientific Society. Madan Park, Rúa dos Inventores, 2825-182 Caparica, Portugal
| |
Collapse
|
9
|
Zhou X, Pu H, Sun DW. DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Crit Rev Food Sci Nutr 2020; 61:2277-2296. [PMID: 32897734 DOI: 10.1080/10408398.2020.1809343] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The frequent occurrence of food safety incidents has given rise to unprecedented concern about food contamination issues for both consumers and the industry. Various contaminations in food pose serious threats to food safety and human health. Many detection methods were studied to address the challenge. Recently, biosensors relying on deoxyribonucleic acid (DNA)-functionalized nanoparticles have been developed as an efficient and effective detection method. In the current review, the strategies for DNA assembly metal and metal oxide nanoparticles are elaborated, recent applications of the sensors based on DNA-functionalized nanoparticles in food contaminant detection are discussed. Pathogenic bacteria, heavy metal ions, mycotoxins, antibiotics, and pesticides are covered as food contaminants. Additionally, limitations and future trends of functionalized nanoparticles-based technology are also presented. The current review indicates that DNA-functionalized metal and metal oxide nanoparticles are a novel nanomaterial with unique biological and physical properties for developing electrochemical, fluorescent, colourimetric and surface-enhanced Raman spectroscopy (SERS) sensors, etc. Compared with conventional detection techniques, DNA-functionalized metal and metal oxide nanoparticles have considerable advantages with high accuracy, high specificity, micro-intelligence, and low cost. Nevertheless, the stability of these sensors and the limitations of real-time detection are still under discussion. Therefore, more tolerant, portable, and rapid DNA sensors should be developed to better the real-time monitoring of harmful contaminants.
Collapse
Affiliation(s)
- Xiyi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
10
|
Influence of Saline Buffers over the Stability of High-Annealed Gold Nanoparticles Formed on Coverslips for Biological and Chemosensing Applications. BIOENGINEERING (BASEL, SWITZERLAND) 2020; 7:bioengineering7030068. [PMID: 32635222 PMCID: PMC7552610 DOI: 10.3390/bioengineering7030068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
Herein, coverslips were used as solid supports for the synthesis of gold nanoparticles (AuNPs) in three steps: (i) detergent cleaning, (ii) evaporation of 4 nm gold film and (iii) exposure at high annealing temperature (550 °C) for 3 h. Such active gold nanostructured supports were investigated for their stability performances in aqueous saline buffers for new assessments of chemical sensing. Two model buffers, namely saline-sodium phosphate-EDTA buffer (SSPE) and phosphate buffer saline (PBS), that are often used in the construction of (bio)sensors, are selected for the optical and microscopic investigations of their influence over the stability of annealed AuNPs on coverslips when using a dropping procedure under dry and wet media working conditions. A study over five weeks monitoring the evolution of the localized surface plasmon resonance (LSPR) chemosensing of 1,2-bis-(4-pyridyl)-ethene (BPE) is discussed. It is concluded that the optimal sensing configuration is based on annealed AuNPs exposed to saline buffers under wet media conditions (overnight at 4 °C) and functionalized with BPE concentrations (10-3-10-11 M) with the highest LSPR spectra after two weeks.
Collapse
|
11
|
Gold Nanoisland Agglomeration upon the Substrate Assisted Chemical Etching Based on Thermal Annealing Process. CRYSTALS 2020. [DOI: 10.3390/cryst10060533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we proposed the self-organization process and its localized surface plasmon resonance property (LSPR) to study the effect of chemically treated quartz glass substrates for gold nanoisland array formation. Firstly, we etched a quartz glass substrate using a sputter etching machine. Secondly, n-butanol was treated on the surface of the substrate. Then, we deposited a gold thin film on the substrate with assisted chemical etching. Finally, the self-organization method examined the thermal annealing of gold nanoisland arrays on a substrate. The results showed that the gold nanoisland that was aggregated on an etched quartz glass substrate was large and sparse, while the gold nanoisland aggregated on a chemically treated substrate was small and dense. Further, it was revealed that a substrate’s surface energy reduced chemical treating and increased the gold nanoisland contact angle on the substrate via the thermal annealing process. It was also confirmed that chemical treatment was useful to control the morphology of gold nanoisland arrays on a substrate, particularly when related to tuning their optical property.
Collapse
|
12
|
Sánchez-Solís A, Karim F, Alam MS, Zhan Q, López-Luke T, Zhao C. Print metallic nanoparticles on a fiber probe for 1064-nm surface-enhanced Raman scattering. OPTICS LETTERS 2019; 44:4997-5000. [PMID: 31613262 DOI: 10.1364/ol.44.004997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
This Letter presents 1064-nm surface-enhanced Raman scattering (SERS) on an optical fiber probe, or 1064-nm-SERS-on-fiber. Metallic nanoparticles are printed on an optical fiber probe by using optothermal surface bubbles under ambient conditions. An optothermal surface bubble is a laser-induced micro-sized bubble that is formed on a solid-liquid interface. The SERS activity of the optical fiber probe for 1064-nm Raman microscopy is tested with rhodamine 6G in aqueous solution. The 1064-nm-SERS-on-fiber can reduce the fluorescent background noise that commonly exists in other Raman systems. It can also compensate for the decreased Raman signal due to the use of an infrared Raman laser. The 1064-nm-SERS-on-fiber will find potential applications in low-background-noise biosensing and endoscopy.
Collapse
|