1
|
Riedl V, Heiser L, Portius M, Schmidt JO, Pompe T. Detection of Sulfonamide Antibiotics Using an Elastic Hydrogel Microparticles-Based Optical Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50202-50211. [PMID: 39271662 PMCID: PMC11440465 DOI: 10.1021/acsami.4c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Sulfonamide antibiotics were the first synthetic antibiotics on the market and still have a broad field of application. Their extensive usage, wrong disposal, and limited degradation technologies in wastewater treatment plants lead to high concentrations in the environment, resulting in a negative impact on ecosystems and an acceleration of antibiotic resistance. Although lab-based analytical methods allow for sulfonamide detection, comprehensive monitoring is hampered by the nonavailability of on-site, inexpensive sensing technologies. In this work, we exploit functionalized elastic hydrogel microparticles and their ability to easily deform upon specific binding with enzyme-coated surfaces to establish the groundwork of a biosensing assay for the fast and straightforward detection of sulfonamide antibiotics. The detection assay is based on sulfamethoxazole-functionalized hydrogel microparticles as sensor probes and the biomimetic interaction of sulfonamide analytes with their natural target enzyme, dihydropteroate synthase (DHPS). DHPS from S. pneumoniae was recombinantly produced by E. coli and covalently coupled on a glass biochip using a reactive maleic anhydride copolymer coating. Monodisperse poly(ethylene glycol) hydrogel microparticles of 50 μm in diameter were synthesized within a microfluidic setup, followed by the oriented coupling of a sulfamethoxazole derivative to the microparticle surface. In proof-of-concept experiments, sulfamethoxazole, as the most used sulfonamide antibiotic in medical applications, was demonstrated to be specifically detectable above a concentration of 10 μM. With its straightforward detection principle, this assay has the potential to be used for point-of-use monitoring of sulfonamide antibiotic contaminants in the environment.
Collapse
Affiliation(s)
- Veronika Riedl
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Lara Heiser
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Matthias Portius
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Jann Ole Schmidt
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Octobre G, Delprat N, Doumèche B, Leca-Bouvier B. Herbicide detection: A review of enzyme- and cell-based biosensors. ENVIRONMENTAL RESEARCH 2024; 249:118330. [PMID: 38341074 DOI: 10.1016/j.envres.2024.118330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Herbicides are the most widely used class of pesticides in the world. Their intensive use raises the question of their harmfulness to the environment and human health. These pollutants need to be detected at low concentrations, especially in water samples. Commonly accepted analytical techniques (HPLC-MS, GC-MS, ELISA tests) are available, but these highly sensitive and time-consuming techniques suffer from high cost and from the need for bulky equipment, user training and sample pre-treatment. Biosensors can be used as complementary early-warning systems that are less sensitive and less selective. On the other hand, they are rapid, inexpensive, easy-to-handle and allow direct detection of the sample, on-site, without any further step other than dilution. This review focuses on enzyme- and cell- (or subcellular elements) based biosensors. Different enzymes (such as tyrosinase or peroxidase) whose activity is inhibited by herbicides are presented. Photosynthetic cells such as algae or cyanobacteria are also reported, as well as subcellular elements (thylakoids, chloroplasts). Atrazine, diuron, 2,4-D and glyphosate appear as the most frequently detected herbicides, using amperometry or optical transduction (mainly based on chlorophyll fluorescence). The recent new WSSA/HRAC classification of herbicides is also included in the review.
Collapse
Affiliation(s)
- Guillaume Octobre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| | - Nicolas Delprat
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Bastien Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Béatrice Leca-Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| |
Collapse
|
3
|
Stanzione I, Pitocchi R, Pennacchio A, Cicatiello P, Piscitelli A, Giardina P. Innovative surface bio-functionalization by fungal hydrophobins and their engineered variants. Front Mol Biosci 2022; 9:959166. [PMID: 36032682 PMCID: PMC9403755 DOI: 10.3389/fmolb.2022.959166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Research on innovative surface functionalization strategies to develop materials with high added value is particularly challenging since this process is a crucial step in a wide range of fields (i.e., biomedical, biosensing, and food packaging). Up to now, the main applied derivatization methods require hazardous and poorly biocompatible reagents, harsh conditions of temperature and pressure, and are time consuming and cost effective. The discovery of biomolecules able to adhere by non-covalent bonds on several surfaces paves the way for their employment as a replacement of chemical processes. A simple, fast, and environment-friendly method of achieving modification of chemically inert surfaces is offered by hydrophobins, small amphiphilic proteins produced by filamentous fungi. Due to their structural characteristics, they form stable protein layers at interfaces, serving as anchoring points that can strongly bind molecules of interest. In addition, genetic engineering techniques allow the production of hydrophobins fused to a wide spectrum of relevant proteins, providing further benefits in term of time and ease of the process. In fact, it is possible to bio-functionalize materials by simply dip-casting, or by direct deposition, rendering them exploitable, for example, in the development of biomedical and biosensing platforms.
Collapse
|
4
|
Tan YQ, Xue B, Yew WS. Genetically Encodable Scaffolds for Optimizing Enzyme Function. Molecules 2021; 26:molecules26051389. [PMID: 33806660 PMCID: PMC7961827 DOI: 10.3390/molecules26051389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Enzyme engineering is an indispensable tool in the field of synthetic biology, where enzymes are challenged to carry out novel or improved functions. Achieving these goals sometimes goes beyond modifying the primary sequence of the enzyme itself. The use of protein or nucleic acid scaffolds to enhance enzyme properties has been reported for applications such as microbial production of chemicals, biosensor development and bioremediation. Key advantages of using these assemblies include optimizing reaction conditions, improving metabolic flux and increasing enzyme stability. This review summarizes recent trends in utilizing genetically encodable scaffolds, developed in line with synthetic biology methodologies, to complement the purposeful deployment of enzymes. Current molecular tools for constructing these synthetic enzyme-scaffold systems are also highlighted.
Collapse
Affiliation(s)
- Yong Quan Tan
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Bo Xue
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-6516-8624
| |
Collapse
|
5
|
Do MH, Dubreuil B, Peydecastaing J, Vaca-Medina G, Nhu-Trang TT, Jaffrezic-Renault N, Behra P. Chitosan-Based Nanocomposites for Glyphosate Detection Using Surface Plasmon Resonance Sensor. SENSORS 2020; 20:s20205942. [PMID: 33096666 PMCID: PMC7589946 DOI: 10.3390/s20205942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/28/2023]
Abstract
This article describes an optical method based on the association of surface plasmon resonance (SPR) with chitosan (CS) film and its nanocomposites, including zinc oxide (ZnO) or graphene oxide (GO) for glyphosate detection. CS and CS/ZnO or CS/GO thin films were deposited on an Au chip using the spin coating technique. The characterization, morphology, and composition of these films were performed by Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and contact angle technique. Sensor preparation conditions including the cross-linking and mobile phase (pH and salinity) were investigated and thoroughly optimized. Results showed that the CS/ZnO thin-film composite provides the highest sensitivity for glyphosate sensing with a low detection limit of 8 nM and with high reproducibility. From the Langmuir-type adsorption model and the effect of ionic strength, the adsorption mechanisms of glyphosate could be controlled by electrostatic and steric interaction with possible formation of 1:1 outer-sphere surface complexes. The selectivity of the optical method was investigated with respect to the sorption of glyphosate metabolite (aminomethylphosphonic acid) (AMPA), glufosinate, and one of the glufonisate metabolites (3-methyl-phosphinico-propionic acid) (MPPA). Results showed that the SPR sensor offers a very good selectivity for glyphosate, but the competition of other molecules could still occur in aqueous systems.
Collapse
Affiliation(s)
- Minh Huy Do
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
- “Water–Environment–Oceanography” Department, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 100000 Hanoi, Vietnam
| | - Brigitte Dubreuil
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
| | - Guadalupe Vaca-Medina
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
- Centre d’Application et de Traitement des Agroressources (CATAR), Université de Toulouse, 31030 Toulouse CEDEX 4, France
| | - Tran-Thi Nhu-Trang
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University (NTTU), 700000 Ho Chi Minh, Vietnam;
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR 5280 CNRS-Université Claude Bernard, 69100 Villeurbanne, France;
| | - Philippe Behra
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
- “Water–Environment–Oceanography” Department, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 100000 Hanoi, Vietnam
- Correspondence:
| |
Collapse
|
6
|
Rettke D, Döring J, Martin S, Venus T, Estrela-Lopis I, Schmidt S, Ostermann K, Pompe T. Picomolar glyphosate sensitivity of an optical particle-based sensor utilizing biomimetic interaction principles. Biosens Bioelectron 2020; 165:112262. [PMID: 32510337 DOI: 10.1016/j.bios.2020.112262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023]
Abstract
The continually growing use of glyphosate and its critically discussed health and biodiversity risks ask for fast, low cost, on-site sensing technologies for food and water. To address this problem, we designed a highly sensitive sensor built on the remarkably specific recognition of glyphosate by its physiological target enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs). This principle is implemented in an interferometric sensor by using the recently established soft colloidal probe (SCP) technique. EPSPs was site-specifically immobilized on a transparent surface utilizing the self-assembling properties of circadian clock gene 2 hydrophobin chimera and homogeneity of the layer was evidenced by atomic force microscopy. Exposure of the enzyme decorated biochip to glyphosate containing samples causes formation of enzyme-analyte complexes and a competitive loss of available binding sites for glyphosate-functionalized poly(ethylene glycol) SCPs. Functionalization of the SCPs with different types of linker molecules and glyphosate was assessed employing confocal laser scanning microscopy as well as confocal Raman microspectroscopy. Overall, reflection interference contrast microscopy analysis of SCP-biochip interactions revealed a strong influence of linker length and glyphosate coupling position on the sensitivity of the sensor. In employing a combination of pentaglycine linker and tethering glyphosate via its secondary amino group, concentrations in aqueous solutions down to 100 pM could be measured by the differential adhesion between SCP and biochip surface, supported by automated image analysis algorithms. This sensing concept could even prove its exceptional pM sensitivity in combination with a superior discrimination against structurally related compounds.
Collapse
Affiliation(s)
- David Rettke
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Julia Döring
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Steve Martin
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Tom Venus
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Kai Ostermann
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| |
Collapse
|