1
|
Chae Y, Roh J, Im M, Jang W, Kim B, Kang J, Youn B, Kim W. Gene Expression Profiling Regulated by lncRNA H19 Using Bioinformatic Analyses in Glioma Cell Lines. Cancer Genomics Proteomics 2024; 21:608-621. [PMID: 39467632 PMCID: PMC11534032 DOI: 10.21873/cgp.20477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND/AIM Glioma, the most common type of primary brain tumor, is characterized by high malignancy, recurrence, and mortality. Long non-coding RNA (lncRNA) H19 is a potential biomarker for glioma diagnosis and treatment due to its overexpression in human glioma tissues and its involvement in cell division and metastasis regulation. This study aimed to identify potential therapeutic targets involved in glioma development by analyzing gene expression profiles regulated by H19. MATERIALS AND METHODS To elucidate the role of H19 in A172 and U87MG glioma cell lines, cell counting, colony formation, and wound healing assays were conducted. RNA-seq data analysis and bioinformatics analyses were performed to reveal the molecular interactions of H19. RESULTS Cell-based experiments showed that elevated H19 levels were related to cancer cell survival, proliferation, and migration. Bioinformatics analyses identified 2,084 differentially expressed genes (DEGs) influenced by H19 which are involved in cancer progression. Specifically, ANXA5, CLEC18B, RAB42, CXCL8, OASL, USP18, and CDCP1 were positively correlated with H19 expression, while CSDC2 and FOXO4 were negatively correlated. These DEGs were predicted to function as oncogenes or tumor suppressors in gliomas, in association with H19. CONCLUSION These findings highlight H19 and its associated genes as potential diagnostic and therapeutic targets for gliomas, emphasizing their clinical significance in patient survival.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Wonyi Jang
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Boseong Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Jihoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Buhyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju-si, Republic of Korea
| |
Collapse
|
2
|
Zhou L, Wang Z, Zhong Q, Song B, Wang Y, Guan T, Liu Q. Ultra-Low-Dose UV-C Photo-stimulation Promotes Neural Stem Cells Differentiation via Presenilin 1 Mediated Notch and β-Catenin Activation. Mol Neurobiol 2024; 61:9491-9506. [PMID: 38649660 DOI: 10.1007/s12035-024-04185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Light-based photo-stimulation has demonstrated promising effects on stem cell behavior, particularly in optimizing neurogenesis. However, the precise parameters for achieving optimal results, including the wavelengths, light intensity, radiating energy, and underlying mechanisms, remain incompletely understood. In this study, we focused on utilizing ultraviolet-C (UV-C) at a specific wavelength of 254 nm, with an ultra-low dose at intensity of 330 μW/cm2 and a total energy of 594 mJ/cm2 per day over a period of seven days, to stimulate the proliferation and differentiation of mouse neural stem cells (NSCs). The results revealed that the application of ultra-low-dose UV-C yielded the most significant effect in promoting differentiation when compared to mixed ultraviolet (UV) and ultraviolet-A (UV-A) radiation at equivalent exposure levels. The mechanism exploration elucidated the role of Presenilin 1 in mediating the activation of β-catenin and Notch 1 by the UV-C treatment, both of which are key factors facilitating NSCs proliferation and differentiation. These findings introduce a novel approach employing ultra-low-dose UV-C for specifically enhancing NSC differentiation, as well as the underlying mechanism. It would contribute valuable insights into brain stimulation and neurogenesis modulation for various diseases, offering potential therapeutic avenues for further exploration.
Collapse
Affiliation(s)
- Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Zihan Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiuling Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Guan
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Qian Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Chen F, Qian WB, Chen ZH, Qian J, Luo C. T cell exhaustion methylation signature drives differential immune responses in glioblastoma. Discov Oncol 2024; 15:530. [PMID: 39377985 PMCID: PMC11461406 DOI: 10.1007/s12672-024-01412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Methylation-related signatures play crucial roles in tumorigenesis and progression. However, their roles in the immune response in primary glioblastoma (GBM) remains unclear. METHODS We analyzed the differential expression of specific members of T cell exhaustion-related pathways in GBM from the perspective of T cell exhaustion. We further screened for significantly negatively correlated methylation sites as candidate methylation markers for T cell exhaustion. Using consensus clustering, we divided the samples into two categories with significant differences in overall survival (OS). We then performed univariate and multivariate Cox regression analyses to construct the T Cell Exhaustion Methylation (TEXM) signature. Finally, we confirmed that this signature served as an independent prognostic factor, and further characterized it in terms of drug resistance and immunotherapy. RESULTS We identified 95 significantly differentially expressed T cell exhaustion-related genes and 51 methylation markers associated with T cell exhaustion. The cancer samples were classified according to methylation site markers, thus indicating two subtypes with significant differences in OS: subtype A and subtype B. Tumor scores, stromal scores, tumor purity, and ESTIMATE scores all showed significant differences between subtypes (P < 0.05). Univariate Cox regression analysis identified five methylation sites significantly associated with OS, and multivariate Cox regression analysis was used to construct the TEXM signature model by using these five methylation sites. Significant differences in OS were found between the groups with high and low TEXM signature scores, on the basis of calculation of the TEXM signature scores of tumor samples and using the median score to divide them into high and low score groups. Survival analysis revealed that the high score group had poorer OS and DFS than the low score group in the validation set. Notably, we observed a significant difference in drug sensitivity between the high and low TEXM signature score groups, with the high score group showing higher drug resistance and poorer prognosis. The tumor immune state, as predicted with Tracking Tumor Immunophenotype (TIP), revealed significant differences in antitumor immune scores between the high and low TEXM signature score groups. Finally, we identified 43 significantly differentially regulated metabolism-associated biological processes. CONCLUSION The epigenetic methylation-related TEXM signature plays a key role in driving differential immune responses in GBM.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xinchun Road, Shanghai, 200065, China
| | - Wen-Bo Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xinchun Road, Shanghai, 200065, China
| | - Zhen-Hua Chen
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xinchun Road, Shanghai, 200065, China.
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xinchun Road, Shanghai, 200065, China.
| |
Collapse
|
4
|
Hu G, Tian B, Han S, Wang S, Hacker M, Li X, Bai X. Prognostic evaluation in recurrent glioma through 11C-Choline PET/CT imaging. EJNMMI Res 2024; 14:84. [PMID: 39266803 PMCID: PMC11393258 DOI: 10.1186/s13550-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- Geng Hu
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Bin Tian
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Shaoli Han
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Shiwei Wang
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Xiang Li
- Department of Nuclear Medicine, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic, Capital Medical University, Tumor Research Institute, Beijing, China.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| | - Xia Bai
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China.
| |
Collapse
|
5
|
Demir O, Demirag G, Cakmak F, Bayraktar DI, Tokmak L. Hemoglobin, albumin, lymphocytes and platelets (HALP) score as a predictor of survival in patients with glioblastoma (GBM). BMC Neurol 2024; 24:260. [PMID: 39061000 PMCID: PMC11282806 DOI: 10.1186/s12883-024-03639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 04/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND We aimed to investigate whether the HALP score was a predictor of survival in patients with Glioblastoma (GBM). METHODS A total of 84 Glioblastoma (GBM) patients followed in our clinic were included in the study. HALP scores were calculated using the preoperative hemoglobin, albumin, lymphocyte and platelet results of the patients. For the HALP score, a cut-off value was found by examining the area below the receiver operating characteristic (ROC) curve. Patients were divided into two groups as low and high according to this cut-off value. The relationships among the clinical, dermographic and laboratory parameters of the patients were examined using these two groups. RESULTS Median OS, PFS, HALP score, NLR, PLR were 15 months (1.0-78.0), 8 months (1.0-66.0), 37.39 ± 23.84 (min 6.00-max 132.31), 4.14, 145.07 respectively. A statistically significant correlation was found between HALP score and OS, PFS, NLR, PLR, ECOG-PS status using Spearman's rho test (p = 0.001, p < 0.001, p < 0.001, p < 0.001, p = 0.026 respectively). For the HALP score, a cut-off value of = 37.39 (AUC = 0.698, 95% CI, p < 0.002) was found using ROC analysis. Median OS was 12 (6.99-17.01) months in the low HALP group and 21 (11.37-30.63) months in the high HALP group (p = 0.117). NLR and PLR were significantly lower in the HALP high group (p < 0.001, p < 0.001 respectively). The ratio of receiving treatment was significantly higher in the high HALP group (p < 0.05). In Multivariate analysis, significant results were found for treatment status and ECOG-PS status (p < 0.001, p = 0.038 respectively). CONCLUSIONS The HALP score measured at the beginning of treatment seems to have predictive importance in the prognosis of GBM patients. A HALP score of > 37.39 was associated with prolonged survival in high-grade brain tumors.
Collapse
Affiliation(s)
- Ozden Demir
- Department of Medical Oncology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.
| | - Guzin Demirag
- Department of Medical Oncology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Furkan Cakmak
- Department of Internal Medicine, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Demet Işık Bayraktar
- Department of Medical Oncology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Leman Tokmak
- Department of Biostatistics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
6
|
Sun T, Liu B, Cai L, Zhou Y, Yang W, Li Y. Suberanilohydroxamic acid (SAHA), a HDAC inhibitor, suppresses the effect of Treg cells by targeting the c-Myc/CCL1 pathway in glioma stem cells and improves PD-L1 blockade therapy. J Neurooncol 2024; 168:457-471. [PMID: 38652401 DOI: 10.1007/s11060-024-04689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE A strong immunosuppressive tumor microenvironment (TME) represents the major barrier responsible for the failure of current immunotherapy approaches in treating Glioblastoma Multiforme (GBM). Within the TME, the regulatory T cells (Tregs) exert immunosuppressive effects on CD8+ T cell - mediated anti-cancer immune killing. Consequently, targeting and inhibiting their immunosuppressive function emerges as an effective therapeutic strategy for GBM. The present study aimed to investigate the mechanisms and effects of Suberanilohydroxamic Acid (SAHA), a histone deacetylase inhibitor, on immunosuppressive Tregs. METHODS The tumor-infiltrating immune cells in the immunocompetent GBM intracranial implanted xenograft mouse model were analyzed by immunohistochemistry and flow cytometry techniques. The mRNA expressions were assessed through the RT-qPCR method, while the related protein expressions were determined using western blot, ELISA, immunofluorescence (IF), and flow cytometry techniques. The relationship between c-Myc and C-C motif Chemokine Ligand 1 (CCL1) promotor was validated through a dual-luciferase reporter assay system and chromatin immunoprecipitation. RESULTS SAHA suppressed effectively tumor growth and extended significantly overall survival in the immunocompetent GBM intracranial xenograft mouse model. Additionally, it promoted the infiltration of CD8+ T lymphocytes while suppressed the infiltration of CD4+ CD25+ Tregs. Furthermore, SAHA enhanced anti-PD-L1 immune therapy in the intracranial xenograft of mice. Mechanistically, SAHA exerted its effects by inhibiting histone deacetylase 2 (HDAC2), thereby suppressing the binding between c-Myc and the CCL1 promotor. CONCLUSION SAHA inhibited the binding of c-Myc with the CCL1 promoter and then suppressed the transcription of CCL1.Additionally, it effectively blocked the interplay of CCL1-CCR8, resulting in reduced activity of Tregs and alleviation of tumor immunosuppression.
Collapse
Affiliation(s)
- Ting Sun
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bin Liu
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- The Department of Neurosurgery at Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Lize Cai
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Youxin Zhou
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wei Yang
- The State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine at, Soochow University, Suzhou, Jiangsu Province, China.
| | - Yanyan Li
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
7
|
Cheng M, Liu L, Zeng Y, Li Z, Zhang T, Xu R, Wang Q, Wu Y. An inflammatory gene-related prognostic risk score model for prognosis and immune infiltration in glioblastoma. Mol Carcinog 2024; 63:326-338. [PMID: 37947182 DOI: 10.1002/mc.23655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to screen for key genes related to the prognosis of patients with glioblastoma (GBM). First, bioinformatics analysis was performed based on databases such as TCGA and MSigDB. Inflammatory-related genes were obtained from the MSigDB database. The TCGA-tumor samples were divided into cluster A and B groups based on consensus clustering. Multivariate Cox regression was applied to construct the risk score model of inflammatory-related genes based on the TCGA database. Second, to understand the effects of model characteristic genes on GBM cells, U-87 MG cells were used for knockdown experiments, which are important means for studying gene function. PLAUR is an unfavorable prognostic biomarker for patients with glioma. Therefore, the model characteristic gene PLAUR was selected for knockdown experiments. The prognosis of cluster A was significantly better than that of cluster B. The verification results also demonstrate that the risk score could predict overall survival. Although the immune cells in cluster B and high-risk groups increased, no matching survival advantage was observed. It may be that stromal activation inhibits the antitumor effect of immune cells. PLAUR knockdown inhibits tumor cell proliferation, migration, and invasion, and promoted tumor cell apoptosis. In conclusion, a prognostic prediction model for GBM composed of inflammatory-related genes was successfully constructed. Increased immune cell expression may be linked to a poor prognosis for GBM, as stromal activation decreased the antitumor activity of immune cells in cluster B and high-risk groups. PLAUR may play an important role in tumor cell proliferation, migration, invasion, and apoptosis.
Collapse
Affiliation(s)
- Meixiong Cheng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zeng
- Department of Neurosurgery Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhili Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tian Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yaqiu Wu
- Department of Neurosurgery Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Huang R, Lu X, Sun X, Wu H. A novel immune cell signature for predicting glioblastoma after radiotherapy prognosis and guiding therapy. Int J Immunopathol Pharmacol 2024; 38:3946320241249395. [PMID: 38687369 PMCID: PMC11062235 DOI: 10.1177/03946320241249395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Background: Glioblastoma, a highly aggressive brain tumor, poses a significant clinical challenge, particularly in the context of radiotherapy. In this study, we aimed to explore infiltrating immune cells and identify immune-related genes associated with glioblastoma radiotherapy prognosis. Subsequently, we constructed a signature based on these genes to discern differences in molecular and tumor microenvironment immune characteristics, ultimately informing potential therapeutic strategies for patients with varying risk profiles. Methods: We leveraged UCSC Xena and CGGA gene expression profiles from post-radiotherapy glioblastoma as verification cohorts. Infiltration ratios were stratified into high and low groups based on the median value. Differential gene expression was determined through Limma differential analysis. A signature comprising four genes was constructed, guided by Gene Ontology (GO) functional enrichment results and Kaplan-Meier survival analysis. We evaluated differences in cell infiltration levels, Immune Score, Stromal Score, and ESTIMATE Score and their Pearson correlations with the signature. Spearman's correlation was computed between the signature and patient drug sensitivity (IC50), predicted using Genomics of Drug Sensitivity in Cancer (GDSC) and CCLE databases. Results: Notably, the infiltration of central memory CD8+T cells exhibited a significant correlation with glioblastoma radiotherapy prognosis. Samples were dichotomized into high- and low-risk groups based on the optimal signature threshold (2.466642). Kaplan-Meier (K-M) survival analysis revealed that the high-risk group experienced a significantly poorer prognosis (p = .0068), with AUC values exceeding 0.82 at 1, 3, and 5 years, underscoring the robust predictive potential of the signature scoring system. Independent validation sets substantiated the validity of the signature. Statistically significant differences in tumor microenvironments (p < .05) were observed between high- and low-risk groups, and these differences were significantly correlated with the signature (p < .05). Furthermore, there were significant correlations between high and low-risk groups regarding immune checkpoint expressions, Immune Prognostic Score (IPS), and Tumor Immune Dysfunction and Exclusion (TIDE) scores. Conclusion: The immune cell signature, comprising SDC-1, PLAUR, FN1, and CXCL13, holds promise as a predictive tool for assessing glioblastoma prognosis following radiotherapy. This signature also offers valuable guidance for tailoring treatment strategies, emphasizing its potential clinical relevance in improving patient outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoxu Lu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xueming Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hui Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Akdaş EY, Temizci B, Karabay A. miR96- and miR182-driven regulation of cytoskeleton results in inhibition of glioblastoma motility. Cytoskeleton (Hoboken) 2023; 80:367-381. [PMID: 36961307 DOI: 10.1002/cm.21754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common forms of brain tumor. As an excessively invasive tumor type, GBM cannot be fully cured due to its invasion ability into healthy brain tissues. Therefore, molecular mechanisms behind GBM migration and invasion need to be deeply investigated for the development of effective GBM treatments. Cellular motility and invasion are strictly associated with the cytoskeleton, especially with actins and tubulins. Palladin, an actin-binding protein, tightly bundles actins during initial invadopodia and contraction fiber formations, which are essential for cellular motility. Spastin, a microtubule-binding protein, cuts microtubules into small pieces and acts on invadopodia elongation and cellular trafficking of invadopodia-associated proteins. Regulation of proteins such as spastin and palladin involved in dynamic reorganization of the cytoskeleton, are rapidly carried out by microRNAs at the posttranscriptional level. Therefore, determining possible regulatory miRNAs of spastin and palladin is critical to elucidate GBM motility. miR96 and miR182 down-regulate SPAST and PALLD at both transcript and protein levels. Over-expression of miR96 and miR182 resulted in inhibition of the motility. However, over-expression of spastin and palladin induced the motility. Spastin and palladin rescue of miR96- or miR182-transfected U251 MG cells resulted in diminished effects of the miRNAs and rescued the motility. Our results demonstrate that miR96 and miR182 over-expressions inhibit GBM motility by regulating cytoskeleton through spastin and palladin. These findings suggest that miR96 and miR182 should be investigated in more detail for their potential use in GBM therapy.
Collapse
Affiliation(s)
- Enes Yağız Akdaş
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Benan Temizci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
10
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
11
|
Mohamed AA, Caussat T, Kelly S, Johansen PM, Lucke-Wold B. Choroid plexus tumors: A spectrum from benign to malignant. TUMOR DISCOVERY 2023; 2:1057. [PMID: 37799733 PMCID: PMC10552314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Choroid plexus tumors (CPT) are believed to originate from outgrowths of the choroid plexus. Despite their broad spectrum of symptoms, invasive nature, and prognosis, most CPTs typically exhibit similar presentations due to their relationship with the cerebral ventricles, as well as the mechanical obstruction and mass effect associated with their growth. In addition, these tumors mainly affect the pediatric population, further complicating the differentiation between benign and malignant subtypes. The World Health Organization classifies CPTs into three grades, namely, grades I, II, or III, based on their mitotic activity, which determine the benign or malignant nature of the tumors. CPTs classified by the World Health Organization (WHO) include choroid plexus papillomas (CPP), atypical CPPs (aCPP), and malignant choroid plexus carcinomas (CPC). Choroid plexus adenomas represent an additional category of benign CPTs not officially classified by the WHO. Despite the variations in histology, immunohistochemistry, imaging, treatment, and prognosis, CPTs cannot be reliably distinguished based solely on clinical presentation. Therefore, in this review, we aim to provide a comprehensive overview of each tumor subtype, along with the current management approach and emerging treatments.
Collapse
Affiliation(s)
- Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Thomas Caussat
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Sophie Kelly
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Phillip M. Johansen
- Department of Neurosurgery, University of South Florida, Orlando, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Pedrosa L, Bedia C, Diao D, Mosteiro A, Ferrés A, Stanzani E, Martínez-Soler F, Tortosa A, Pineda E, Aldecoa I, Centellas M, Muñoz-Tudurí M, Sevilla A, Sierra À, González Sánchez JJ. Preclinical Studies with Glioblastoma Brain Organoid Co-Cultures Show Efficient 5-ALA Photodynamic Therapy. Cells 2023; 12:cells12081125. [PMID: 37190034 DOI: 10.3390/cells12081125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The high recurrence of glioblastoma (GB) that occurs adjacent to the resection cavity within two years of diagnosis urges an improvement of therapies oriented to GB local control. Photodynamic therapy (PDT) has been proposed to cleanse infiltrating tumor cells from parenchyma to ameliorate short long-term progression-free survival. We examined 5-aminolevulinic acid (5-ALA)-mediated PDT effects as therapeutical treatment and determined optimal conditions for PDT efficacy without causing phototoxic injury to the normal brain tissue. METHODS We used a platform of Glioma Initiation Cells (GICs) infiltrating cerebral organoids with two different glioblastoma cells, GIC7 and PG88. We measured GICs-5-ALA uptake and PDT/5-ALA activity in dose-response curves and the efficacy of the treatment by measuring proliferative activity and apoptosis. RESULTS 5-ALA (50 and 100 µg/mL) was applied, and the release of protoporphyrin IX (PpIX) fluorescence measures demonstrated that the emission of PpIX increases progressively until its stabilization at 24 h. Moreover, decreased proliferation and increased apoptosis corroborated the effect of 5-ALA/PDT on cancer cells without altering normal cells. CONCLUSIONS We provide evidence about the effectiveness of PDT to treat high proliferative GB cells in a complex in vitro system, which combines normal and cancer cells and is a useful tool to standardize new strategic therapies.
Collapse
Affiliation(s)
- Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona-FCRB, 08036 Barcelona, Spain
| | - Carmen Bedia
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona-FCRB, 08036 Barcelona, Spain
| | - Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Elisabetta Stanzani
- Laboratory of Pharmacology and Brain Pathology, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Fina Martínez-Soler
- Apoptosis and Cancer Unit, Department of Basic Nursing, IDIBELL, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 L'Hospitalet del Llobregat, Spain
| | - Avelina Tortosa
- Apoptosis and Cancer Unit, Department of Basic Nursing, IDIBELL, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 L'Hospitalet del Llobregat, Spain
| | - Estela Pineda
- Medical Oncology Department, Hospital Clinic and Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, 08036 Barcelona, Spain
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Neurological Tissue Bank of the Biobank, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08036 Barcelona, Spain
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona-FCRB, 08036 Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Faculty of Health and Live Sciences, Universitat Pompeu Fabra, 08036 Barcelona, Spain
| | - José Juan González Sánchez
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona-FCRB, 08036 Barcelona, Spain
- Department of Neurosurgery, Hospital Clínic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
13
|
Semyachkina-Glushkovskaya O, Bragin D, Bragina O, Socolovski S, Shirokov A, Fedosov I, Ageev V, Blokhina I, Dubrovsky A, Telnova V, Terskov A, Khorovodov A, Elovenko D, Evsukova A, Zhoy M, Agranovich I, Vodovozova E, Alekseeva A, Kurths J, Rafailov E. Low-Level Laser Treatment Induces the Blood-Brain Barrier Opening and the Brain Drainage System Activation: Delivery of Liposomes into Mouse Glioblastoma. Pharmaceutics 2023; 15:567. [PMID: 36839889 PMCID: PMC9966329 DOI: 10.3390/pharmaceutics15020567] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM). The LLLT induces the generation of singlet oxygen without photosensitizers (PSs) in the blood endothelial cells and astrocytes, which can be a trigger mechanism of BBBO. LLLT-BBBO causes activation of the ABC-transport system with a temporal decrease in the expression of tight junction proteins. The BBB recovery is accompanied by activation of neuronal metabolic activity and stabilization of the BBB permeability. LLLT-BBBO can be used as a new opportunity of interstitial PS-free photodynamic therapy (PDT) for modulation of brain tumor immunity and improvement of immuno-therapy for GBM in infants in whom PDT with PSs, radio- and chemotherapy are strongly limited, as well as in adults with a high allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | - Sergey Socolovski
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Vasily Ageev
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Khorovodov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Daria Elovenko
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Zhoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Ilana Agranovich
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Jürgen Kurths
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Potsdam Institute for Climate Impact Research, Department of Complexity Science, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
14
|
Zhou Y, Xiao D, Jiang X, Nie C. EREG is the core onco-immunological biomarker of cuproptosis and mediates the cross-talk between VEGF and CD99 signaling in glioblastoma. J Transl Med 2023; 21:28. [PMID: 36647156 PMCID: PMC9843967 DOI: 10.1186/s12967-023-03883-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Glioma is the most prevalent primary tumor of the central nervous system. Glioblastoma multiforme (GBM) is the most malignant form of glioma with an extremely poor prognosis. A novel, regulated cell death form of copper-induced cell death called "cuproptosis" provides a new prospect for cancer treatment by regulating cuproptosis. METHODS Data from bulk RNA sequencing (RNA-seq) analysis (The Cancer Genome Atlas cohort and Chinese Glioma Genome Atlas cohort) and single cell RNA-seq (scRNA-seq) analysis were integrated to reveal their relationships. A scoring system was constructed according to the cuproptosis-related gene expression, and core genes were experimentally verified using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot (WB), immunohistochemistry (IHC), and immunofluorescence (IF). Moreover, cell counting kit-8 (CCK8), colony formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, transwell, and flow cytometry cell cycle were performed to evaluate cell proliferation, invasion, and migration. RESULTS The Cuproptosis Activation Scoring (CuAS) Model has stable and independent prognostic efficacy, as verified by two CGGA datasets. Epiregulin (EREG), the gene of the model has the most contributions in the principal component analysis (PCA), is an onco-immunological gene that can affect immunity by influencing the expression of programmed death-ligand 1 (PD-L1) and mediate the process of cuproptosis by influencing the expression of ferredoxin 1 (FDX1). Single cell transcriptome analysis revealed that high CuAS GBM cells are found in vascular endothelial growth factor A (VEGFA) + malignant cells. Oligodendrocyte transcription factor 1 (OLIG1) + malignant is the original clone, and VEGF and CD99 are the differential pathways of specific cell communication between the high and low CuAS groups. This was also demonstrated by immunofluorescence in the tissue sections. Furthermore, CuAS has therapeutic potential for immunotherapy, and we predict that many drugs (methotrexate, NU7441, KU -0063794, GDC-0941, cabozantinib, and NVP-BEZ235) may be used in patients with high CuAS. CONCLUSION EREG is the core onco-immunological biomarker of CuAS and modulates the cross-talk between VEGF and CD99 signaling in glioblastoma, and CuAS may provide support for immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yujie Zhou
- grid.33199.310000 0004 0368 7223Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Dongdong Xiao
- grid.33199.310000 0004 0368 7223Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Xiaobing Jiang
- grid.33199.310000 0004 0368 7223Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chuansheng Nie
- grid.33199.310000 0004 0368 7223Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
15
|
Liang J, Sun J, Liu A, Chen L, Ma X, Liu X, Zhang C. Saikosaponin D improves chemosensitivity of glioblastoma by reducing the its stemness maintenance. Biochem Biophys Rep 2022; 32:101342. [PMID: 36186734 PMCID: PMC9516410 DOI: 10.1016/j.bbrep.2022.101342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Chemotherapy is one of the important adjuvant methods for the treatment of glioblastoma (GBM), and chemotherapy resistance is a clinical problem that neurooncologists need to solve urgently. It is reported that Saikosaponin D (SSD), an active component of Bupleurum chinense, had various of antitumor activities and could also enhance the chemosensitivity of liver cancer and other tumors. However, it is not clear whether it has an effect on the chemosensitivity of glioma and its specific mechanism. Methods The CCK8 assay, Wound healing assay and Matrigel invasion assay were used to detect the effect of SSD on the phenotype of GBM cells. We detected the effect of SSD on the chemosensitivity of GSM by Flow cytometry, LDH content and MTT assay. Then, we used cell plate cloning, semi-quantitative PCR and western blotting experiments to detect the effect of SSD on the stem potential of GBM cells. Finally, the effect of SSD on the chemosensitivity of GBM and its potential mechanism were verified by nude mouse experiments in vivo. Results firstly, we found that SSD could partially inhibit the malignant phenotype of LN-229 cells, including inhibiting migration, invasion and apoptosis, and increasing the apoptosis rate and lactate dehydrogenase (LDH) release of LN-229 cells under the treatment of temozolomide (TMZ), that is to say, increasing the chemotherapy effect of TMZ on the cells. In addition, we unexpectedly found that SSD could partially inhibit the colony forming ability of LN-229 cells, which directly related to the stemness maintenance potential of cancer stem cells. Subsequently, our results showed that SSD could inhibit the gene and protein expression of stemness factors (OCT4, SOX2, c-Myc and Klf4) in LN-229 cells. Finally, we verified that SSD could improve the chemotherapy effect of TMZ by inhibiting the stem potential of glioblastoma in vivo nude mice. Conclusion this research can provide a certain theoretical basis for the application of SSD in the chemotherapy resistance of GBM and its mechanism of action, and provide a new hope for the clinical treatment of glioblastoma. SSD could inhibit the malignant phenotype of LN-229 cells, increase the chemotherapy effect of TMZ on the cells. SSD could inhibit the colony forming ability of LN-229 cells, and also inhibit their gene and protein expression of stemness factors. We verified that SSD could improve the chemotherapy effect of TMZ by inhibiting the stem potential of glioblastoma.
Collapse
|
16
|
Enhanced Delivery of Rose Bengal by Amino Acids Starvation and Exosomes Inhibition in Human Astrocytoma Cells to Potentiate Anticancer Photodynamic Therapy Effects. Cells 2022; 11:cells11162502. [PMID: 36010578 PMCID: PMC9406355 DOI: 10.3390/cells11162502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer strategy based on the light energy stimulation of photosensitizers (PS) molecules within a malignant cell. Among a multitude of recently challenged PS, Rose bengal (RB) has been already reported as an inducer of cytotoxicity in different tumor cells. However, RB displays a low penetration capability across cell membranes. We have therefore developed a short-term amino acids starvation protocol that significantly increases RB uptake in human astrocytoma cells compared to normal rat astrocytes. Following induced starvation uptake, RB is released outside cells by the exocytosis of extracellular vesicles (EVs). Thus, we have introduced a specific pharmacological treatment, based on the GW4869 exosomes inhibitor, to interfere with RB extracellular release. These combined treatments allow significantly reduced nanomolar amounts of administered RB and a decrease in the time interval required for PDT stimulation. The overall conditions affected astrocytoma viability through the activation of apoptotic pathways. In conclusion, we have developed for the first time a combined scheme to simultaneously increase the RB uptake in human astrocytoma cells, reduce the extracellular release of the drug by EVs, and improve the effectiveness of PDT-based treatments. Importantly, this strategy might be a valuable approach to efficiently deliver other PS or chemotherapeutic drugs in tumor cells.
Collapse
|
17
|
Zhou S, Wang H, Huang Y, Wu Y, Lin Z. The global change of gene expression pattern caused by PTEN mutation affects the prognosis of glioblastoma. Front Oncol 2022; 12:952521. [PMID: 36016609 PMCID: PMC9396408 DOI: 10.3389/fonc.2022.952521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Glioblastoma (GBM), an aggressive primary tumor, is common in humans, accounting for 12–15% of all intracranial tumors, and has median survival of fewer than 15 months. Since a growing body of evidence suggests that conventional drugs are ineffective against GBM, our goal is to find emerging therapies that play a role in its treatment. This research constructs a risk model to predict the prognosis of GBM patients. A set of genes associated with GBM was taken from a GBM gene data bank, and clinical information on patients with GBM was retrieved from the Cancer Genome Atlas (TCGA) data bank. One-way Cox and Kaplan–Meier analyses were performed to identify genes in relation to prognosis. Groups were classified into high and low expression level of PTEN expression. Prognosis-related genes were further identified, and multi-factor Cox regression analysis was used to build risk score equations for the prognostic model to construct a survival prognostic model. The area under the ROC curve suggested that the pattern had high accuracy. When combined with nomogram analysis, GJB2 was considered an independent predictor of GBM prognosis. This study provides a potential prognostic predictive biological marker for GBM patients and confirms that GJB2 is a key gene for GBM progression.
Collapse
|
18
|
Kaundal B, Karmakar S, Roy Choudhury S. Mitochondria-targeting nano therapy altering IDH2-mediated EZH2/EZH1 interaction as precise epigenetic regulation in glioblastoma. Biomater Sci 2022; 10:5301-5317. [PMID: 35917200 DOI: 10.1039/d1bm02006d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glioblastoma (GBM) is a complex brain cancer with frequent relapses and high mortality and still awaits effective treatment. Mitochondria dysfunction is a pathogenic condition in GBM and could be a prime therapeutic target for ceasing GBM progression. Strategies to overcome brain solid tumor barriers and selectively target mitochondria within specific cell types may improve GBM treatment. Here, we present hypericin-conjugated gold nanoparticles (PEG-AuNPs@Hyp) where hypericin is a mitochondrion-targeting agent exhibiting multimodal therapy by critically impacting the IDH2 gene (Isocitrate dehydrogenase) and its interaction with polycomb methyltransferase EZH1/2 for GBM therapy. It significantly localizes in mitochondria by enhanced cellular uptake in the human GBM cell lines/three-dimensional (3D) culture model under red-light exposure. It triggers oxidative stress and changes the mitochondrial potential, with increased Bax/Bcl2 ratio enhancing GBM cell death. The suppressed expression of mutated IDH2 and polycomb group of proteins upon PEG-AuNPs@Hyp/light exposure regulates mitochondria-targeting-mediated GBM metabolism with epigenetic repression of complex machinery function. Polyubiquitination and proteasomal degradation of EZH1 indicate the implication of these polycomb proteins in GBM progression. Chromatin immunoprecipitation reveals the IDH2 and EZH1/EZH2 direct interaction, confirming the role played by IDH2 in modulating the expression of EZH1 and EZH2. In vivo studies further displayed better tumor ablation in a GBM tumor-bearing nude mouse model. The present multimodal nanoformulation compromised the functional dependency of polycomb on mitochondrial IDH2 and established the mechanism of GBM inhibition.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab-140306, India.
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab-140306, India.
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab-140306, India.
| |
Collapse
|
19
|
Kabir F, Apu MNH. Multi-omics analysis predicts fibronectin 1 as a prognostic biomarker in glioblastoma multiforme. Genomics 2022; 114:110378. [PMID: 35513291 DOI: 10.1016/j.ygeno.2022.110378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is one of the most malignant and intractable central nervous system tumors with high recurrence, low survival rate, and poor prognosis. Despite the advances of aggressive, multimodal treatment, a successful treatment strategy is still elusive, often leading to therapeutic resistance and fatality. Thus, it is imperative to search for and identify novel markers critically associated with GBM pathogenesis to improve the existing trend of diagnosis, prognosis, and treatment. Seven publicly available GEO microarray datasets containing 409 GBM samples were integrated and further data mining was conducted using several bioinformatics tools. A total of 209 differentially expressed genes (DEGs) were identified in the GBM tissue samples compared to the normal brains. Gene Ontology (GO) enrichment analysis of the DEGs revealed association of the upregulates genes with extracellular matrix (ECM), conceivably contributing to the invasive nature of GBM while downregulated DEGs were found to be predominantly related to neuronal processes and structures. Alongside, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway analyses described the involvement of the DEGs with various crucial contributing pathways (PI3K-Akt signaling pathway, p53 signaling pathway, insulin secretion, etc.) in GBM progression and pathogenesis. Protein-protein interaction (PPI) network containing 879 nodes and 1237 edges revealed 3 significant modules and consecutive KEGG pathway analysis of these modules showed a significant connection to gliomagenesis. Later, 10 hub genes were screened out based on degree and their expressions were externally validated. Surprisingly, only fibronectin 1 (FN1) high expression appeared to be related to poor prognosis. Subsequently, 109 transcription factors and 211 miRNAs were detected to be involved with the hub genes where FN1 demonstrated the highest number of interactions. Considering its high connectivity and potential prognostic value FN1 could be a novel biomarker providing new insights into the prognosis and treatment for GBM, although experimental validation is required.
Collapse
Affiliation(s)
- Farzana Kabir
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
20
|
Shang J, Wang Y, Li Z, Jiang L, Bai Q, Zhang X, Xiao G, Zhang J. ATRX-dependent SVCT2 mediates macrophage infiltration in the glioblastoma xenograft model. J Neurophysiol 2022; 127:1309-1316. [PMID: 35417255 DOI: 10.1152/jn.00486.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alpha thalassemia/mental retardation syndrome X-linked (ATRX) mutation impairs DNA damage repair in glioblastoma (GBM), making these cells more susceptible to treatment, which may contribute to the survival advantage in GBM patients containing ATRX mutations. To better understand the role of ATRX in GBM, genes correlated with ATRX expression were screened in the Cancer Genome Atlas (702 cases) and Chinese Glioma Genome Atlas (325 cases) databases. Sodium-vitamin C cotransporter 2 (SVCT2) was the most positively correlated gene with ATRX expression. ATRX (about 1.99-fold) and SVCT2 (about 2.25-fold) were upregulated in GBM tissues from 40 patients compared to normal brain tissues from 23 subjects. ShSVCT2 transfection did not alter the in vitro viability of GL261 cells. At the same time, it could inhibit the proliferation of GL261 cells in the orthotopic transplantation model with diminished infiltrating macrophages (CD45highCD11b+), down-regulated chemokine (C-C motif) ligand 2 (Ccl2), Ccl4, C-X-C motif chemokine ligand 1 (Cxcl1), and Cxcl15 expression, and decreased p-IκBα and p-c-Jun expression. Effect of ShSVCT2 transfection could be reversed by overexpression of SVCT2. siRNA interference of ATRX-dependent SVCT2 signal with shSVCT2 could inhibit tumor cell proliferation in Glu261-LuNeo xenograft tumor model with more survival advantage, probably by the inhibited macrophage chemotaxis. These results indicate that ATRX-dependent SVCT2-mediated chemokine-induced macrophage infiltration is regulated by the NF-κB pathway, which could be considered as treatment targets.
Collapse
Affiliation(s)
- Jinxing Shang
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yana Wang
- Cangzhou Medical College, Cangzhou Higher Education District, Hebei Province, Cangzhou, Hebei, China
| | - Zhuangzhuang Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lijun Jiang
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qingling Bai
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoling Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guoxin Xiao
- Department of Neurosurgery, Cangxian Hospital, Cangzhou, Hebei, China
| | - Jinguo Zhang
- Department of Neurology, Mengcun County Hospital, Mengcun County, Cangzhou, Hebei, China
| |
Collapse
|
21
|
ZC3H15 promotes glioblastoma progression through regulating EGFR stability. Cell Death Dis 2022; 13:55. [PMID: 35027542 PMCID: PMC8758739 DOI: 10.1038/s41419-021-04496-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022]
Abstract
Zinc finger CCCH-type containing 15 (ZC3H15), a highly conserved protein involved in several cellular processes, which was responsible for tumorigenesis and may be a promising marker in myeloid leukemia (AML) and hepatocellular carcinoma (HCC). However, little is known about the biological significance and molecular mechanisms of ZC3H15 in GBM. In this study, we revealed that ZC3H15 was overexpressed in GBM and high ZC3H15 expression was associated with poor survival of patients with GBM. We found that ZC3H15 promoted the proliferation, migration, invasion, and tumorigenesis of GBM cells by activating the EGFR signaling pathway. We also revealed that ZC3H15 reduced EGFR ubiquitination, which was responsible for EGFR protein stabilization. In addition, we demonstrated that ZC3H15 inhibited the transcription of CBL, which was an E3 ubiquitin ligase for EGFR proteasomal degradation. And silencing of CBL could partly abrogate the inhibitory effects on cell proliferation, migration, and invasion of GBM cells induced by ZC3H15 knockdown. Thus, our research revealed the important roles of ZC3H15 in GBM development and provided a brand-new insight for improving the treatment of GBMs.
Collapse
|
22
|
Feasibility of Photodynamic Therapy for Glioblastoma with the Mitochondria-Targeted Photosensitizer Tetramethylrhodamine Methyl Ester (TMRM). Biomedicines 2021; 9:biomedicines9101453. [PMID: 34680569 PMCID: PMC8533469 DOI: 10.3390/biomedicines9101453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
One of the most challenging problems in the treatment of glioblastoma (GBM) is the highly infiltrative nature of the disease. Infiltrating cells that are non-resectable are left behind after debulking surgeries and become a source of regrowth and recurrence. To prevent tumor recurrence and increase patient survival, it is necessary to cleanse the adjacent tissue from GBM infiltrates. This requires an innovative local approach. One such approach is that of photodynamic therapy (PDT) which uses specific light-sensitizing agents called photosensitizers. Here, we show that tetramethylrhodamine methyl ester (TMRM), which has been used to asses mitochondrial potential, can be used as a photosensitizer to target GBM cells. Primary patient-derived GBM cell lines were used, including those specifically isolated from the infiltrative edge. PDT with TMRM using low-intensity green light induced mitochondrial damage, an irreversible drop in mitochondrial membrane potential and led to GBM cell death. Moreover, delayed photoactivation after TMRM loading selectively killed GBM cells but not cultured rat astrocytes. The efficacy of TMRM-PDT in certain GBM cell lines may be potentiated by adenylate cyclase activator NKH477. Together, these findings identify TMRM as a prototypical mitochondrially targeted photosensitizer with beneficial features which may be suitable for preclinical and clinical translation.
Collapse
|
23
|
Carriero F, Martinelli C, Gabriele F, Barbieri G, Zanoletti L, Milanesi G, Casali C, Azzalin A, Manai F, Paolillo M, Comincini S. Berberine Photo-Activation Potentiates Cytotoxicity in Human Astrocytoma Cells through Apoptosis Induction. J Pers Med 2021; 11:942. [PMID: 34683083 PMCID: PMC8541605 DOI: 10.3390/jpm11100942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has recently attracted interest as an innovative and adjuvant treatment for different cancers including malignant gliomas. Among these, Glioblastoma (GBM) is the most prevalent neoplasm in the central nervous system. Despite conventional therapeutic approaches that include surgical removal, radiation, and chemotherapy, GBM is characterized by an extremely poor prognosis and a high rate of recurrence. PDT is a physical process that induces tumor cell death through the genesis and accumulation of reactive oxygen species (ROS) produced by light energy interaction with a photosensitizing agent. In this contribution, we explored the potentiality of the plant alkaloid berberine (BBR) as a photosensitizing and cytotoxic agent coupled with a PDT scheme using a blue light source in human established astrocytoma cell lines. Our data mainly indicated for the combined BBR-PDT scheme a potent activation of the apoptosis pathway, through a massive ROS production, a great extent of mitochondria depolarization, and the sub-sequent activation of caspases. Altogether, these results demonstrated that BBR is an efficient photosensitizer agent and that its association with PDT may be a potential anticancer strategy for high malignant gliomas.
Collapse
Affiliation(s)
- Francesca Carriero
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Carolina Martinelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
- SKYTEC Srl, 20147 Milan, Italy
| | - Fabio Gabriele
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Lisa Zanoletti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Gloria Milanesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Claudio Casali
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Alberto Azzalin
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Federico Manai
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Mayra Paolillo
- Department of Drug Science, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| |
Collapse
|
24
|
Li J, Wang W, Wang J, Cao Y, Wang S, Zhao J. Viral Gene Therapy for Glioblastoma Multiforme: A Promising Hope for the Current Dilemma. Front Oncol 2021; 11:678226. [PMID: 34055646 PMCID: PMC8155537 DOI: 10.3389/fonc.2021.678226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM), as one of the most common malignant brain tumors, was limited in its treatment effectiveness with current options. Its invasive and infiltrative features led to tumor recurrence and poor prognosis. Effective treatment and survival improvement have always been a challenge. With the exploration of genetic mutations and molecular pathways in neuro-oncology, gene therapy is becoming a promising therapeutic approach. Therapeutic genes are delivered into target cells with viral vectors to act specific antitumor effects, which can be used in gene delivery, play an oncolysis effect, and induce host immune response. The application of engineering technology makes the virus vector used in genetics a more prospective future. Recent advances in viral gene therapy offer hope for treating brain tumors. In this review, we discuss the types and designs of viruses as well as their study progress and potential applications in the treatment of GBM. Although still under research, viral gene therapy is promising to be a new therapeutic approach for GBM treatment in the future.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Wang Y, Zhang T, Li C, Guo J, Xu B, Xue L. Telmisartan attenuates human glioblastoma cells proliferation and oncogenicity by inducing the lipid oxidation. Asia Pac J Clin Oncol 2021; 18:217-223. [PMID: 33945216 PMCID: PMC9290901 DOI: 10.1111/ajco.13574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Background Glioblastoma (GBM) is one of the most common primary brain tumors, which accounts up to 80% of malignant brain tumors and the 5‐year relative survival rate is below 5%. Recent studies showed that the lipid metabolism played an essential role in GBM development. As a peroxisome proliferators‐activated receptors γ (PPAR‐γ) agonist, telmisartan improves the lipid metabolism and has been used to treat hypertension for long time. It has also been shown to have anticancer function, such as in lung cancer and melanoma. Methods Incucyte real‐time live cell imaging system was used to assess the effect of telmisartan on glioma cell lines U87 and U251 proliferation. Transwell assay and colony formation assay were conducted to detect the effect of telmisartan on oncogenicity of GBM cell lines. Western blot and immunofluorescence analysis were used to detect the effect of telmisartan on the expression of PPAR‐γ and hydroxyacyl‐coenzyme A dehydrogenase alpha subunit (HADHA). Results We demonstrate that telmisartan inhibits two glioma cell lines U87 and U251 proliferation in a time‐ and dose‐dependent manner, and arrests the cell cycle at S phase. We further show that telmisartan decreases the oncogenicity of GBM cell lines. Our data show that telmisartan treatment significantly increases the PPAR‐γ expression level, enhances the lipid oxidation, and upregulates the level of fatty acid oxidation key enzyme HADHA. Conclusions Telmisartan inhibits the proliferation and oncogenicity while it also increases the lipid oxidation of human GBM cells.
Collapse
Affiliation(s)
- Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Tengrui Zhang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Chen Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Jia Guo
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, China.,Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Baohui Xu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China.,Biobank, Peking University Third Hospital, Beijing, China
| |
Collapse
|
26
|
Yassine AA, Lilge L, Betz V. Optimizing Interstitial Photodynamic Therapy Planning With Reinforcement Learning-Based Diffuser Placement. IEEE Trans Biomed Eng 2021; 68:1668-1679. [PMID: 33471748 DOI: 10.1109/tbme.2021.3053197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interstitial photodynamic therapy (iPDT) has shown promising results recently as a minimally invasive stand-alone or intra-operative cancer treatment. The development of non-toxic photosensitizing drugs with improved target selectivity has increased its efficacy. However, personalized treatment planning that determines the number of photon emitters, their positions and their input powers while taking into account tissue anatomy and treatment response is still lacking to further improve outcomes. OBJECTIVE To develop new algorithms that generate high-quality plans by optimizing over the light source positions, along with their powers, to minimize the damage to organs-at-risk while eradicating the tumor. The optimization algorithms should also accurately model the physics of light propagation through the use of Monte-Carlo simulators. METHODS We use simulated-annealing as a baseline algorithm to place the sources. We propose different source perturbations that are likely to provide better outcomes and study their impact. To minimize the number of moves attempted (and effectively runtime) without degrading result quality, we use a reinforcement learning-based method to decide which perturbation strategy to perform in each iteration. We simulate our algorithm on virtual brain tumors modeling real glioblastoma multiforme cases, assuming a 5-ALA PpIX induced photosensitizer that is activated at [Formula: see text] wavelength. RESULTS The algorithm generates plans that achieve an average of 46% less damage to organs-as-risk compared to the manual placement used in current clinical studies. SIGNIFICANCE Having a general and high-quality planning system makes iPDT more effective and applicable to a wider variety of oncological indications. This paves the way for more clinical trials.
Collapse
|
27
|
Rahnama S, Bakhshinejad B, Farzam F, Bitaraf A, Ghazimoradi MH, Babashah S. Identification of dysregulated competing endogenous RNA networks in glioblastoma: A way toward improved therapeutic opportunities. Life Sci 2021; 277:119488. [PMID: 33862117 DOI: 10.1016/j.lfs.2021.119488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma is recognized as one of the leading causes of death worldwide. Although there have been considerable advancements in understanding the causative molecular mechanisms of this malignancy, effective therapeutic strategies are still in limited use. It has been revealed that non-coding RNAs (ncRNAs) play critical roles in glioblastoma development, while interactions between the regulatory molecules such as long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs) remain to be fully deciphered. Over the recent years, researchers have discovered a new category of RNA molecules called competing endogenous RNA (ceRNA). This kind of RNA can contribute to molecular interactions in the form of ceRNA networks (ceRNETs). Multiple lines of evidence have demonstrated that dysregulation of various ceRNA networks is involved in glioblastoma development. Therefore, gaining insights into these dysregulations might offer potential for the early diagnosis of glioblastoma patients and identification of efficient therapeutic targets. In this review, we provide an overview of recent discoveries on ceRNA networks and the involvement of dysregulated networks in posing limitations to temozolomide therapy. We also describe signaling pathways relevant to the progression of glioblastoma.
Collapse
Affiliation(s)
- Saghar Rahnama
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
28
|
Nguyen HM, Guz-Montgomery K, Lowe DB, Saha D. Pathogenetic Features and Current Management of Glioblastoma. Cancers (Basel) 2021; 13:cancers13040856. [PMID: 33670551 PMCID: PMC7922739 DOI: 10.3390/cancers13040856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of both sexes, and has an average overall survival of 12-15 months, despite advances in diagnosis and rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most survivors will eventually experience tumor recurrence that only imparts survival of a few months. GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment. Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative treatment options that allow for more efficient targeting of the tumor including small molecule drugs and immunotherapies. A number of other strategies in development include therapies based on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances in these potential approaches shed a promising outlook on the future of GBM treatment. In this review, we briefly discuss the current understanding of adult GBM's pathogenetic features that promote treatment resistance. We also outline novel and promising targeted agents currently under development for GBM patients during the last few years with their current clinical status.
Collapse
|
29
|
Ibarra LE, Vilchez ML, Caverzán MD, Milla Sanabria LN. Understanding the glioblastoma tumor biology to optimize photodynamic therapy: From molecular to cellular events. J Neurosci Res 2020; 99:1024-1047. [PMID: 33370846 DOI: 10.1002/jnr.24776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) has recently gained attention as an alternative treatment of malignant gliomas. Glioblastoma (GBM) is the most prevalent within tumors of the central nervous system (CNS). Conventional treatments for this CNS tumor include surgery, radiation, and chemotherapy. Surgery is still being considered as the treatment of choice. Even so, the poor prognosis and/or recurrence of the disease after applying any of these treatments highlight the urgency of exploring new therapies and/or improving existing ones to achieve the definitive eradication of tumor masses and remaining cells. PDT is a therapeutic modality that involves the destruction of tumor cells by reactive oxygen species induced by light, which were previously treated with a photosensitizing agent. However, in recent years, its experimental application has expanded to other effects that could improve overall performance against GBM. In the current review, we revisit the main advances of PDT for GBM management and also, the recent mechanistic insights about cellular and molecular aspects related to tumoral resistance to PDT of GBM.
Collapse
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - María Laura Vilchez
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - Matías Daniel Caverzán
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - Laura Natalia Milla Sanabria
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| |
Collapse
|
30
|
Borah BM, Cacaccio J, Durrani FA, Bshara W, Turowski SG, Spernyak JA, Pandey RK. Sonodynamic therapy in combination with photodynamic therapy shows enhanced long-term cure of brain tumor. Sci Rep 2020; 10:21791. [PMID: 33311561 PMCID: PMC7732989 DOI: 10.1038/s41598-020-78153-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
This article presents the construction of a multimodality platform that can be used for efficient destruction of brain tumor by a combination of photodynamic and sonodynamic therapy. For in vivo studies, U87 patient-derived xenograft tumors were implanted subcutaneously in SCID mice. For the first time, it has been shown that the cell-death mechanism by both treatment modalities follows two different pathways. For example, exposing the U87 cells after 24 h incubation with HPPH [3-(1'-hexyloxy)ethyl-3-devinyl-pyropheophorbide-a) by ultrasound participate in an electron-transfer process with the surrounding biological substrates to form radicals and radical ions (Type I reaction); whereas in photodynamic therapy, the tumor destruction is mainly caused by highly reactive singlet oxygen (Type II reaction). The combination of photodynamic therapy and sonodynamic therapy both in vitro and in vivo have shown an improved cell kill/tumor response, that could be attributed to an additive and/or synergetic effect(s). Our results also indicate that the delivery of the HPPH to tumors can further be enhanced by using cationic polyacrylamide nanoparticles as a delivery vehicle. Exposing the nano-formulation with ultrasound also triggered the release of photosensitizer. The combination of photodynamic therapy and sonodynamic therapy strongly affects tumor vasculature as determined by dynamic contrast enhanced imaging using HSA-Gd(III)DTPA.
Collapse
Affiliation(s)
- Ballav M Borah
- Photolitec, LLC, 73 High Street, Buffalo, NY, 14203, USA
| | - Joseph Cacaccio
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Farukh A Durrani
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Wiam Bshara
- Department of Pathology, Pathology Network Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Steven G Turowski
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | | | - Ravindra K Pandey
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
31
|
Photosensitizer delivery by fibrin glue: potential for bypassing the blood-brain barrier. Lasers Med Sci 2020; 36:1031-1038. [PMID: 33123852 DOI: 10.1007/s10103-020-03140-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023]
Abstract
Fibrin glue (FG) has potential as a delivery vehicle for photosensitizer directly to the resection cavity, so it may bypass the blood-brain barrier (BBB) and increase the concentration of successfully delivered photosensitizer. A specialized form of photodynamic therapy (PDT), photochemical internalization (PCI), which involves both photosensitizer and chemotherapeutic agent internalization, can locally inhibit the growth of cells. This will allow the reduction of recurrence of malignant gliomas around surgical resection. This study will look at the efficacy of FG loaded with drugs in mediating both PDT and PCI in inhibiting 3-dimensional tumor spheroid growth in vitro. Experiments were conducted on spheroids comprised of F98 glioma cells using photosensitizer AlPcS2a and chemotherapeutic drug bleomycin (BLM). At 2-, 24-, 48-, and 72-h increments, supernatant covering an FG layer within a well was collected and replaced by fresh medium, then added to spheroid-containing wells, which contained the respective chemicals for PDT and PCI. The wells were then exposed to light treatment from a diode laser, and after, spheroid growth was monitored for a period of 14 days. Significant spheroid growth inhibition was observed in both PDT and PCI modalities, but was far greater in PCI. Additionally, complete growth suppression was achieved via PCI at the highest radiant exposure. Achieving a slow photosensitizer release, significant F98 spheroid inhibition was observed in FG-mediated PDT and PCI. The present study showed BLM-PCI was the most efficacious of the two modalities.
Collapse
|
32
|
Baydoun M, Moralès O, Frochot C, Ludovic C, Leroux B, Thecua E, Ziane L, Grabarz A, Kumar A, de Schutter C, Collinet P, Azais H, Mordon S, Delhem N. Photodynamic Therapy Using a New Folate Receptor-Targeted Photosensitizer on Peritoneal Ovarian Cancer Cells Induces the Release of Extracellular Vesicles with Immunoactivating Properties. J Clin Med 2020; 9:jcm9041185. [PMID: 32326210 PMCID: PMC7230754 DOI: 10.3390/jcm9041185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Often discovered at an advanced stage, ovarian cancer progresses to peritoneal carcinoma, which corresponds to the invasion of the serosa by multiple tumor implants. The current treatment is based on the combination of chemotherapy and tumor cytoreduction surgery. Despite the progress and standardization of surgical techniques combined with effective chemotherapy, post-treatment recurrences affect more than 60% of women in remission. Photodynamic therapy (PDT) has been particularly indicated for the treatment of superficial lesions on large surfaces and appears to be a relevant candidate for the treatment of microscopic intraperitoneal lesions and non-visible lesions. However, the impact of this therapy on immune cells remains unclear. Hence, the objective of this study is to validate the efficacy of a new photosensitizer [pyropheophorbide a-polyethylene glycol-folic acid (PS)] on human ovarian cancer cells and to assess the impact of the secretome of PDT-treated cells on human peripheral blood mononuclear cells (PBMC). We show that PS, upon illumination, can induce cell death of different ovarian tumor cells. Furthermore, PDT using this new PS seems to favor activation of the immune response by inducing the secretion of effective cytokines and inhibiting the pro-inflammatory and immunosuppressive ones, as well as releasing extracellular vesicles (EVs) prone to activating immune cells. Finally, we show that PDT can activate CD4+ and CD8+ T cells, resulting in a potential immunostimulating process. The results of this pilot study therefore indicate that PS-PDT treatment may not only be effective in rapidly and directly destroying target tumor cells but also promote the activation of an effective immune response; notably, by EVs. These data thus open up good prospects for the treatment of micrometastases of intraperitoneal ovarian carcinosis which are currently inoperable.
Collapse
Affiliation(s)
- Martha Baydoun
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
| | - Olivier Moralès
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
- CNRS UMS 3702, Institut de Biologie de Lille, 59 021 Lille, France
| | - Céline Frochot
- LGRGP, UMR-CNRS 7274, University of Lorraine, 54 001 Nancy, France; (C.F.); (C.L.)
| | - Colombeau Ludovic
- LGRGP, UMR-CNRS 7274, University of Lorraine, 54 001 Nancy, France; (C.F.); (C.L.)
| | - Bertrand Leroux
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
| | - Elise Thecua
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
| | - Laurine Ziane
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
| | - Anne Grabarz
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
- Unité de Gynécologie-Obstétrique, Hôpital Jeanne de Flandre, 59 000 CHU Lille, France
| | - Abhishek Kumar
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
| | - Clémentine de Schutter
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
| | - Pierre Collinet
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
- Unité de Gynécologie-Obstétrique, Hôpital Jeanne de Flandre, 59 000 CHU Lille, France
| | - Henri Azais
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
- Service de Chirurgie et Cancérologie Gynécologique et Mammaire, Hôpital de la Pitié-Salpêtrière, AP-HP, 75 013 Paris, France
| | - Serge Mordon
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
- Correspondence: (S.M.); (N.D.); Tel./Fax: +33-32044-6708 (S.M.); Tel.: +33-3208-71253/1251 (N.D.); Fax: +33-32087-1019 (N.D.)
| | - Nadira Delhem
- Université de Lille, Faculté des Sciences et Technologies, INSERM, CHU-Lille, U1189-ONCO-THAI–Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France; (M.B.); (O.M.); (B.L.); (E.T.); (L.Z.); (A.G.); (A.K.); (C.d.S.); (P.C.); (H.A.)
- Correspondence: (S.M.); (N.D.); Tel./Fax: +33-32044-6708 (S.M.); Tel.: +33-3208-71253/1251 (N.D.); Fax: +33-32087-1019 (N.D.)
| |
Collapse
|