1
|
Asadi nejad H, Yousefi Nejad A, Akbari S, Naseh M, Shid Moosavi SM, Haghani M. The low and high doses administration of lutein improves memory and synaptic plasticity impairment through different mechanisms in a rat model of vascular dementia. PLoS One 2024; 19:e0302850. [PMID: 38748711 PMCID: PMC11095768 DOI: 10.1371/journal.pone.0302850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND AND AIM Vascular dementia (VD) is a common type of dementia. This study aimed to evaluate the effects of low and high doses of lutein administration in bilateral-carotid vessel occlusion (2VO) rats. EXPERIMENTAL PROCEDURE The rats were divided into the following groups: the control, sham-, vehicle (2VO+V) groups, and two groups after 2VO were treated with lutein 0.5 (2VO+LUT-o.5) and 5mg/kg (2VO+LUT-5). The passive-avoidance and Morris water maze were performed to examine fear and spatial memory. The field-potential recording was used to investigate the properties of basal synaptic transmission (BST), paired-pulse ratio (PPR), as an index for measurement of neurotransmitter release, and long-term potentiation (LTP). The hippocampus was removed to evaluate hippocampal cells, volume, and MDA level. RESULT Treatment with low and high doses improves spatial memory and LTP impairment in VD rats, but only the high dose restores the fear memory, hippocampal cell loss, and volume and MDA level. Interestingly, low-dose, but not high-dose, increased PPR. However, BST recovered only in the high-dose treated group. CONCLUSIONS Treatment with a low dose might affect neurotransmitter release probability, but a high dose affects postsynaptic processes. It seems likely that low and high doses improve memory and LTP through different mechanisms.
Collapse
Affiliation(s)
- Hamideh Asadi nejad
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Yousefi Nejad
- Faculty of Veterinary Medicine, Department of Veterinary Medicine Islamic Azad University of Kazeroon, Shiraz, Iran
| | - Somayeh Akbari
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
de Souza DLS, Costa HMGES, Neta FI, Morais PLADG, Guerra LMDM, Guzen FP, de Oliveira LC, Cavalcanti JRLDP, de Albuquerque CC, de Vasconcelos CL. Brain Neuroplasticity after Treatment with Antiseizure: A Review. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:665-675. [PMID: 37859439 PMCID: PMC10591163 DOI: 10.9758/cpn.23.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023]
Abstract
Epilepsy is a disease characterized by the periodic occurrence of seizures. Seizures can be controlled by antiseizure medications, which can improve the lives of individuals with epilepsy when given proper treatment. Therefore, this study aimed to review the scientific literature on brain neuroplasticity after treatment with antiseizure drugs in different regions of the brain. According to the findings, that several antiseizure, such as lamotrigine, diazepam, levetiracetam, and valproic acid, in addition to controlling seizures, can also act on neuroplasticity in different brain regions. The study of this topic becomes important, as it will help to understand the neuroplastic mechanisms of these drugs, in addition to helping to improve the effectiveness of these drugs in controlling the disease.
Collapse
Affiliation(s)
- Débora Lopes Silva de Souza
- Faculty of Health Sciences, Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | | | - Francisca Idalina Neta
- Faculty of Health Sciences, Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | | | - Luís Marcos de Medeiros Guerra
- Faculty of Health Sciences, Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | - Fausto Pierdoná Guzen
- Faculty of Health Sciences, Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | | | | | - Cynthia Cavalcanti de Albuquerque
- Faculty of Exact and Natural Sciences, Department of Biological Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | - Claudio Lopes de Vasconcelos
- Faculty of Exact and Natural Sciences, Department of Chemistry, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| |
Collapse
|
3
|
Zhang D, Chen S, Xu S, Wu J, Zhuang Y, Cao W, Chen X, Li X. The clinical correlation between Alzheimer's disease and epilepsy. Front Neurol 2022; 13:922535. [PMID: 35937069 PMCID: PMC9352925 DOI: 10.3389/fneur.2022.922535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease and epilepsy are common nervous system diseases in older adults, and their incidence rates tend to increase with age. Patients with mild cognitive impairment and Alzheimer's disease are more prone to have seizures. In patients older than 65 years, neurodegenerative conditions accounted for ~10% of all late-onset epilepsy cases, most of which are Alzheimer's disease. Epilepsy and seizure can occur in the early and late stages of Alzheimer's disease, leading to functional deterioration and behavioral alterations. Seizures promote amyloid-β and tau deposits, leading to neurodegenerative processes. Thus, there is a bi-directional association between Alzheimer's disease and epilepsy. Epilepsy is a risk factor for Alzheimer's disease and, in turn, Alzheimer's disease is an independent risk factor for developing epilepsy in old age. Many studies have evaluated the shared pathogenesis and clinical relevance of Alzheimer's disease and epilepsy. In this review, we discuss the clinical associations between Alzheimer's disease and epilepsy, including their incidence, clinical features, and electroencephalogram abnormalities. Clinical studies of the two disorders in recent years are summarized, and new antiepileptic drugs used for treating Alzheimer's disease are reviewed.
Collapse
|
4
|
Salaka RJ, Nair KP, Sasibhushana RB, Udayakumar D, Kutty BM, Srikumar BN, Shankaranarayana Rao BS. Differential effects of levetiracetam on hippocampal CA1 synaptic plasticity and molecular changes in the dentate gyrus in epileptic rats. Neurochem Int 2022; 158:105378. [PMID: 35753511 DOI: 10.1016/j.neuint.2022.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacological treatment with anti-seizure drugs (ASDs) remains the mainstay in epilepsy management. Levetiracetam (LEV) is a second-generation ASD with a novel SV2A protein target and is indicated for treating focal epilepsies. While there is considerable literature in acute models, its effect in chronic epilepsy is less clear. Particularly, its effects on neuronal excitability, synaptic plasticity, adult hippocampal neurogenesis, and histological changes in chronic epilepsy have not been evaluated thus far, which formed the basis of the present study. Six weeks post-lithium-pilocarpine-induced status epilepticus (SE), epileptic rats were injected with levetiracetam (54mg/kg b.w. i.p.) once daily for two weeks. Following LEV treatment, Schaffer collateral - CA1 (CA3-CA1) synaptic plasticity and structural changes in hippocampal subregions CA3 and CA1 were evaluated. The number of doublecortin (DCX+) and reelin (RLN+) positive neurons was estimated. Further, mossy fiber sprouting was evaluated in DG by Timm staining, and splash test was performed to assess the anxiety-like behavior. Chronic epilepsy resulted in decreased basal synaptic transmission and increased paired-pulse facilitation without affecting post-tetanic potentiation and long-term potentiation. Moreover, chronic epilepsy decreased hippocampal subfields volume, adult hippocampal neurogenesis, and increased reelin expression and mossy fiber sprouting with increased anxiety-like behavior. LEV treatment restored basal synaptic transmission and paired-pulse facilitation ratio in CA3-CA1 synapses. LEV also restored the CA1 subfield volume in chronic epilepsy. LEV did not affect epilepsy-induced abnormal adult hippocampal neurogenesis, ectopic migration of newborn granule cells, mossy fiber sprouting in DG, and anxiety-like behavior. Our results indicate that in addition to reducing seizures, LEV has favorable effects on synaptic transmission and structural plasticity in chronic epilepsy. These findings add new dimensions to the use of LEV in chronic epilepsy and paves way for further research into its effects on cognition and affective behavior.
Collapse
Affiliation(s)
- Raghava Jagadeesh Salaka
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kala P Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | | - Deepashree Udayakumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | |
Collapse
|
5
|
Levetiracetam adjunct to quetiapine for the acute manic phase of bipolar disorder: a randomized, double-blind and placebo-controlled clinical trial of efficacy, safety and tolerability. Int Clin Psychopharmacol 2022; 37:46-53. [PMID: 34864756 DOI: 10.1097/yic.0000000000000383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Unsatisfactory responses to bipolar disorder treatments have necessitated novel therapeutic approaches. Evidence of levetiracetam's effectiveness in mania was reported in previous studies. This study evaluated its efficacy, safety and tolerability as an adjunct to quetiapine in mania. Forty-four patients with Young Mania Rating Scale (YMRS) score ≥20 entered and were randomized to receive levetiracetam plus quetiapine or placebo plus quetiapine for 6 weeks. Patients were assessed using the YMRS and Beck Scale for Suicidal Ideations (BSSI) at baseline and weeks 2, 4 and 6. Changes in the scores, remission rates and response to treatment were compared between the groups. Forty patients completed the trial. The general linear model (GLM) repeated measures demonstrated a significant effect for time × treatment interaction on the YMRS score during the trial (P = 0.04). A greater reduction in YMRS scores was seen in the levetiracetam group compared with the placebo group from baseline to week 4 (P = 0.045). Response to treatment was significantly better in the levetiracetam group (P = 0.046). No significant effect for time × treatment interaction on BSSI score was seen in GLM repeated measures. Finally, there was no significant difference in the frequency of adverse events. Adjunctive levetiracetam is effective, safe and well-tolerated in patients with mania. Further high-quality, large-scale trials are recommended.
Collapse
|
6
|
Wang L, Ding J, Zhu C, Guo B, Yang W, He W, Li X, Wang Y, Li W, Wang F, Sun T. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole‑kindled mice. Int J Mol Med 2021; 48:219. [PMID: 34676876 PMCID: PMC8547541 DOI: 10.3892/ijmm.2021.5052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Epilepsy comorbidities and anti-epileptic drugs (AEDs) are currently the main limitations of epilepsy treatment. Semaglutide is a glucagon like peptide-1 analogue that has entered the market as a new once-weekly drug for type II diabetes. The aim of the present study was to investigate the functions of semaglutide in epilepsy and inflammation models, in order to investigate its potential mechanism. In vitro, an inflammation model was established using lipopolysaccharide (LPS) and nigericin stimulation in BV2 cells. In vivo, chronic epilepsy model mice were generated using a pentylenetetrazole (PTZ) kindling method. BV2 cell proliferation was assessed using the Cell Counting Kit-8. The effects of semaglutide on NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and inflammatory cytokine secretion were determined using western blotting (WB) and ELISA. A lactate dehydrogenase (LDH) assay kit was used to detect the effect of semaglutide on LDH release. Electrocorticography and the modified Racine scale were used to assess seizure severity. Cognitive function was evaluated with behavioral assessment. Morphological changes in the hippocampus were observed with Nissl staining. Double immunofluorescence staining for NeuN and Iba-1, WB and immunofluorescence analysis of apoptosis-related proteins were used to evaluate neuronal apoptosis. The NLRP3 inflammasome was assessed by reverse transcription-quantitative PCR, WB and immunofluorescence staining, and inflammatory cytokine release was evaluated by WB analysis in the hippocampus of C57/BL6J model mouse. Semaglutide attenuated the LPS- and nigericin-induced inflammatory response and LDH release by blocking NLRP3 inflammasome activation in BV2 cells. Moreover, semaglutide decreased seizure severity, alleviated hippocampal neuronal apoptosis, ameliorated cognitive dysfunction, blocked NLRP3 inflammasome activation and decreased inflammatory cytokine secretion in PTZ-kindled mice. These results indicated that semaglutide reduced seizure severity, exerted neuroprotective effects and ameliorated cognitive dysfunction, possibly via inhibition of NLRP3 inflammasome activation and inflammatory cytokine secretion. Semaglutide may therefore be a novel, promising adjuvant therapeutic for epilepsy and its associated comorbidities.
Collapse
Affiliation(s)
- Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Changliang Zhu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Wu Yang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Wenxin He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Wenchao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| |
Collapse
|