1
|
Kapsali I, Brinia ME, Constantinides VC. Cerebrospinal Fluid Total, Phosphorylated and Oligomeric A-Synuclein in Parkinson's Disease: A Systematic Review, Meta-Analysis and Meta-Regression Study. Biomedicines 2024; 12:2266. [PMID: 39457579 PMCID: PMC11504870 DOI: 10.3390/biomedicines12102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The diagnostic accuracy for Parkinson's disease (PD), a synucleinopathy, based on diagnostic criteria is suboptimal. A biomarker for synucleinopathies is pivotal both from a clinical and from a research point of view. CSF a-synuclein has been extensively studied over the past two decades as a candidate biomarker of synucleinopathies. Herein, we present data on studies focusing on total, phosphorylated and oligomeric CSF a-synuclein in PD. Methods: Pubmed, Scopus and Web of Science were searched for studies with >10 PD patients and control subjects, with data (mean, SD) on total, phosphorylated or oligomeric a-synuclein. Cohen's d, as a measure of effect size, was calculated for all a-synuclein forms. Subgroup analysis and meta-regression were performed in an effort to explain between-study heterogeneity. Results: Thirty studies on total, six studies on oligomeric and one study on phosphorylated a-synuclein were included. Total a-synuclein was decreased and oligomeric a-synuclein increased in PD patients vs. controls. The effect size was medium for total and high for oligomeric a-synuclein. A-syn forms provided suboptimal combined sensitivity/specificity for the differentiation of PD from controls. There was significant between-study heterogeneity. The PD cohort characteristics (sex, age, disease duration, UPDRS, H & Y) and study characteristics (study design, healthy vs. neurological controls, control for CSF blood contamination, method of a-syn measurement) could not account for between-study heterogeneity. Publication bias was limited. Conclusions: CSF a-synuclein levels lack sufficient accuracy to be used as biomarkers for PD. The standardization of (pre)analytical variables may improve the discriminatory power of a-synuclein forms in the future.
Collapse
Affiliation(s)
- Ioanna Kapsali
- Neurodegenerative Disorders and Epilepsy Ward, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.-E.B.)
| | - Maria-Evgenia Brinia
- Neurodegenerative Disorders and Epilepsy Ward, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.-E.B.)
| | - Vasilios C. Constantinides
- Neurodegenerative Disorders and Epilepsy Ward, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.-E.B.)
- Neurochemistry and Biomarkers Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
2
|
Ramalingam N, Haass C, Dettmer U. Physiological roles of α-synuclein serine-129 phosphorylation - not an oxymoron. Trends Neurosci 2024; 47:480-490. [PMID: 38862330 DOI: 10.1016/j.tins.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
α-Synuclein (αS) is an abundant presynaptic protein that regulates neurotransmission. It is also a key protein implicated in a broad class of neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD) and Lewy body dementia (LBD). Pathological αS deposits in these diseases, Lewy bodies (LBs)/neurites (LNs), contain about 90% of αS in its phospho-serine129 (pS129) form. Therefore, pS129 is widely used as a surrogate marker of pathology. However, recent findings demonstrate that pS129 is also physiologically triggered by neuronal activity to positively regulate synaptic transmission. In this opinion article, we contrast the literature on pathological and physiological pS129, with a special focus on the latter. We emphasize that pS129 is ambiguous and knowledge about the context is necessary to correctly interpret changes in pS129.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Cristiani CM, Scaramuzzino L, Quattrone A, Parrotta EI, Cuda G, Quattrone A. Serum Oligomeric α-Synuclein and p-tau181 in Progressive Supranuclear Palsy and Parkinson's Disease. Int J Mol Sci 2024; 25:6882. [PMID: 38999992 PMCID: PMC11241320 DOI: 10.3390/ijms25136882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Clinical differentiation of progressive supranuclear palsy (PSP) from Parkinson's disease (PD) is challenging due to overlapping phenotypes and the late onset of specific atypical signs. Therefore, easily assessable diagnostic biomarkers are highly needed. Since PD is a synucleopathy while PSP is a tauopathy, here, we investigated the clinical usefulness of serum oligomeric-α-synuclein (o-α-synuclein) and 181Thr-phosphorylated tau (p-tau181), which are considered as the most important pathological protein forms in distinguishing between these two parkinsonisms. We assessed serum o-α-synuclein and p-tau181 by ELISA and SIMOA, respectively, in 27 PSP patients, 43 PD patients, and 39 healthy controls (HC). Moreover, we evaluated the correlation between serum biomarkers and biological and clinical features of these subjects. We did not find any difference in serum concentrations of p-tau181 and o-α-synuclein nor in the o-α-synuclein/p-tau181 ratio between groups. However, we observed that serum p-tau181 positively correlated with age in HC and PD, while serum o-α-synuclein correlated positively with disease severity in PD and negatively with age in PSP. Finally, the o-α-synuclein/p-tau181 ratio showed a negative correlation with age in PD.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Clinical and Experimental Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| |
Collapse
|
4
|
Abdul‐Rahman T, Herrera‐Calderón RE, Ahluwalia A, Wireko AA, Ferreira T, Tan JK, Wolfson M, Ghosh S, Horbas V, Garg V, Perveen A, Papadakis M, Ashraf GM, Alexiou A. The potential of phosphorylated α-synuclein as a biomarker for the diagnosis and monitoring of multiple system atrophy. CNS Neurosci Ther 2024; 30:e14678. [PMID: 38572788 PMCID: PMC10993367 DOI: 10.1111/cns.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder characterized by the presence of glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-Syn). Accurate diagnosis and monitoring of MSA present significant challenges, which can lead to potential misdiagnosis and inappropriate treatment. Biomarkers play a crucial role in improving the accuracy of MSA diagnosis, and phosphorylated α-synuclein (p-syn) has emerged as a promising biomarker for aiding in diagnosis and disease monitoring. METHODS A literature search was conducted on PubMed, Scopus, and Google Scholar using specific keywords and MeSH terms without imposing a time limit. Inclusion criteria comprised various study designs including experimental studies, case-control studies, and cohort studies published only in English, while conference abstracts and unpublished sources were excluded. RESULTS Increased levels of p-syn have been observed in various samples from MSA patients, such as red blood cells, cerebrospinal fluid, oral mucosal cells, skin, and colon biopsies, highlighting their diagnostic potential. The α-Syn RT-QuIC assay has shown sensitivity in diagnosing MSA and tracking its progression. Meta-analyses and multicenter investigations have confirmed the diagnostic value of p-syn in cerebrospinal fluid, demonstrating high specificity and sensitivity in distinguishing MSA from other neurodegenerative diseases. Moreover, combining p-syn with other biomarkers has further improved the diagnostic accuracy of MSA. CONCLUSION The p-syn stands out as a promising biomarker for MSA. It is found in oligodendrocytes and shows a correlation with disease severity and progression. However, further research and validation studies are necessary to establish p-syn as a reliable biomarker for MSA. If proven, p-syn could significantly contribute to early diagnosis, disease monitoring, and assessing treatment response.
Collapse
Affiliation(s)
| | | | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | | | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' AnusandhanBhubaneswarIndia
| | | | - Vandana Garg
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakHaryanaIndia
| | - Asma Perveen
- Glocal School of Life SciencesGlocal UniversitySaharanpurUttar PradeshIndia
- Princess Dr. Najla Bint Saud Al‐Saud Center for Excellence Research in BiotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Ghulam Md Ashraf
- Department of Medical Laboratory SciencesUniversity of Sharjah, College of Health Sciences, and Research Institute for Medical and Health SciencesSharjahUAE
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationNew South WalesAustralia
| |
Collapse
|
5
|
Chopra A, Outeiro TF. Aggregation and beyond: alpha-synuclein-based biomarkers in synucleinopathies. Brain 2024; 147:81-90. [PMID: 37526295 DOI: 10.1093/brain/awad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023] Open
Abstract
Parkinson's disease is clinically known for the loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of intraneuronal cytoplasmic inclusions rich in alpha-synuclein called 'Lewy bodies' and 'Lewy neurites'. Together with dementia with Lewy bodies and multiple system atrophy, Parkinson's disease is part of a group of disorders called synucleinopathies. Currently, diagnosis of synucleinopathies is based on the clinical assessment which often takes place in advanced disease stages. While the causal role of alpha-synuclein aggregates in these disorders is still debatable, measuring the levels, types or seeding properties of different alpha-synuclein species hold great promise as biomarkers. Recent studies indicate significant differences in peptide, protein and RNA levels in blood samples from patients with Parkinson's disease. Seed amplification assays using CSF, blood, skin biopsy, olfactory swab samples show great promise for detecting synucleinopathies and even for discriminating between different synucleinopathies. Interestingly, small extracellular vesicles, such as exosomes, display differences in their cargoes in Parkinson's disease patients versus controls. In this update, we focus on alpha-synuclein aggregation and possible sources of disease-related species released in extracellular vesicles, which promise to revolutionize the diagnosis and the monitoring of disease progression.
Collapse
Affiliation(s)
- Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
6
|
Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 2023; 12:38. [PMID: 37501056 PMCID: PMC10375766 DOI: 10.1186/s40035-023-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidimensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systematically summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promotion of implementation in clinic are also discussed.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Anagnostou D, Sfakianaki G, Melachroinou K, Soutos M, Constantinides V, Vaikath N, Tsantzali I, Paraskevas GP, Agnaf OE, Vekrellis K, Emmanouilidou E. Assessment of Aggregated and Exosome-Associated α-Synuclein in Brain Tissue and Cerebrospinal Fluid Using Specific Immunoassays. Diagnostics (Basel) 2023; 13:2192. [PMID: 37443586 DOI: 10.3390/diagnostics13132192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Even though it is currently well-established that α-synuclein aggregation is closely associated with the pathological events in Parkinson's disease (PD) and several other neurodegenerative disorders, collectively called synucleinopathies, the mechanistic link between α-synuclein aggregates and the onset and progression of neurodegeneration in these diseases remain unclear. The process of aggregation initiates from a structurally distorted monomer that gradually oligomerizes to generate a repertoire of fibrillar and oligomeric multimers that deposit within diseased cells in the brain. Total α-synuclein has been proposed as a potential biomarker in PD, but most of the studies do not discriminate between distinct α-synuclein conformers. To correlate protein measurements to disease pathology, we have developed a conformation-specific ELISA method that selectively detects fibrillar and oligomeric forms of α-synuclein without cross-reacting with monomers. We have used this assay to determine the levels of aggregated α-synuclein in human and mouse brain tissue as well as in CSF and CSF-derived exosomes from patients with synucleinopathy and control subjects. Our results verify the ability of the new assay to detect aggregated α-synuclein in complex matrices and support the idea that the levels of these conformers are related to the age of onset in PD patients, while CSF analysis showed that these species exist in low abundance in CSF and CSF-derived exosomes. Future studies will be required to fully assess the diagnostic usefulness of this ELISA in synucleinopathies.
Collapse
Affiliation(s)
- Dimitrios Anagnostou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Garifalia Sfakianaki
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Katerina Melachroinou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Miltiadis Soutos
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Vassilios Constantinides
- Neurochemistry Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Nishant Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (H.B.K.U.), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Ioanna Tsantzali
- 2nd Department of Neurology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George P Paraskevas
- 2nd Department of Neurology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Omar El Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (H.B.K.U.), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
8
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
9
|
Canever JB, Soares ES, de Avelar NCP, Cimarosti HI. Targeting α-synuclein post-translational modifications in Parkinson's disease. Behav Brain Res 2023; 439:114204. [PMID: 36372243 DOI: 10.1016/j.bbr.2022.114204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Although the exact mechanisms underlying PD are still not completely understood, it is well accepted that α-synuclein plays key pathophysiological roles as the main constituent of the cytoplasmic inclusions known as Lewy bodies. Several post-translational modifications (PTMs), such as the best-known phosphorylation, target α-synuclein and are thus implicated in its physiological and pathological functions. In this review, we present (1) an overview of the pathophysiological roles of α-synuclein, (2) a descriptive analysis of α-synuclein PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, truncation, and O-GlcNAcylation, as well as (3) a brief summary on α-synuclein PTMs as potential biomarkers for PD. A better understanding of α-synuclein PTMs is of paramount importance for elucidating the mechanisms underlying PD and can thus be expected to improve early detection and monitoring disease progression, as well as identify promising new therapeutic targets.
Collapse
Affiliation(s)
- Jaquelini B Canever
- Post-Graduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Laboratory of Aging, Resources and Rheumatology, UFSC, Araranguá, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Post-Graduate Program in Pharmacology, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Núbia C P de Avelar
- Laboratory of Aging, Resources and Rheumatology, UFSC, Araranguá, Santa Catarina, Brazil
| | - Helena I Cimarosti
- Post-Graduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Post-Graduate Program in Pharmacology, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
10
|
Gonzalez-Robles C, Weil RS, van Wamelen D, Bartlett M, Burnell M, Clarke CS, Hu MT, Huxford B, Jha A, Lambert C, Lawton M, Mills G, Noyce A, Piccini P, Pushparatnam K, Rochester L, Siu C, Williams-Gray CH, Zeissler ML, Zetterberg H, Carroll CB, Foltynie T, Schrag A. Outcome Measures for Disease-Modifying Trials in Parkinson's Disease: Consensus Paper by the EJS ACT-PD Multi-Arm Multi-Stage Trial Initiative. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1011-1033. [PMID: 37545260 PMCID: PMC10578294 DOI: 10.3233/jpd-230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Multi-arm, multi-stage (MAMS) platform trials can accelerate the identification of disease-modifying treatments for Parkinson's disease (PD) but there is no current consensus on the optimal outcome measures (OM) for this approach. OBJECTIVE To provide an up-to-date inventory of OM for disease-modifying PD trials, and a framework for future selection of OM for such trials. METHODS As part of the Edmond J Safra Accelerating Clinical Trials in Parkinson Disease (EJS ACT-PD) initiative, an expert group with Patient and Public Involvement and Engagement (PPIE) representatives' input reviewed and evaluated available evidence on OM for potential use in trials to delay progression of PD. Each OM was ranked based on aspects such as validity, sensitivity to change, participant burden and practicality for a multi-site trial. Review of evidence and expert opinion led to the present inventory. RESULTS An extensive inventory of OM was created, divided into: general, motor and non-motor scales, diaries and fluctuation questionnaires, cognitive, disability and health-related quality of life, capability, quantitative motor, wearable and digital, combined, resource use, imaging and wet biomarkers, and milestone-based. A framework for evaluation of OM is presented to update the inventory in the future. PPIE input highlighted the need for OM which reflect their experience of disease progression and are applicable to diverse populations and disease stages. CONCLUSION We present a range of OM, classified according to a transparent framework, to aid selection of OM for disease-modifying PD trials, whilst allowing for inclusion or re-classification of relevant OM as new evidence emerges.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Burnell
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Plasma Phospho-Tau-181 as a Diagnostic Aid in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081879. [PMID: 36009425 PMCID: PMC9405617 DOI: 10.3390/biomedicines10081879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers remain the gold standard for fluid-biomarker-based diagnosis of Alzheimer’s disease (AD) during life. Plasma biomarkers avoid lumbar puncture and allow repeated sampling. Changes of plasma phospho-tau-181 in AD are of comparable magnitude and seem to parallel the changes in CSF, may occur in preclinical or predementia stages of the disease, and may differentiate AD from other causes of dementia with adequate accuracy. Plasma phospho-tau-181 may offer a useful alternative to CSF phospho-tau determination, but work still has to be done concerning the optimal method of determination with the highest combination of sensitivity and specificity and cost-effect parameters.
Collapse
|
12
|
Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson's disease and other synucleinopathies. NPJ Parkinsons Dis 2022; 8:93. [PMID: 35869066 PMCID: PMC9307631 DOI: 10.1038/s41531-022-00357-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disease, develops and progresses for 10–15 years before the clinical diagnostic symptoms of the disease are manifested. Furthermore, several aspects of PD pathology overlap with other neurodegenerative diseases (NDDs) linked to alpha-synuclein (aSyn) aggregation, also called synucleinopathies. Therefore, there is an urgent need to discover and validate early diagnostic and prognostic markers that reflect disease pathophysiology, progression, severity, and potential differences in disease mechanisms between PD and other NDDs. The close association between aSyn and the development of pathology in synucleinopathies, along with the identification of aSyn species in biological fluids, has led to increasing interest in aSyn species as potential biomarkers for early diagnosis of PD and differentiate it from other synucleinopathies. In this review, we (1) provide an overview of the progress toward mapping the distribution of aSyn species in the brain, peripheral tissues, and biological fluids; (2) present comparative and critical analysis of previous studies that measured total aSyn as well as other species such as modified and aggregated forms of aSyn in different biological fluids; and (3) highlight conceptual and technical gaps and challenges that could hinder the development and validation of reliable aSyn biomarkers; and (4) outline a series of recommendations to address these challenges. Finally, we propose a combined biomarker approach based on integrating biochemical, aggregation and structure features of aSyn, in addition to other biomarkers of neurodegeneration. We believe that capturing the diversity of aSyn species is essential to develop robust assays and diagnostics for early detection, patient stratification, monitoring of disease progression, and differentiation between synucleinopathies. This could transform clinical trial design and implementation, accelerate the development of new therapies, and improve clinical decisions and treatment strategies.
Collapse
|
13
|
Constantinides VC, Souvatzoglou M, Paraskevas GP, Chalioti M, Boufidou F, Stefanis L, Kapaki E. Dopamine transporter SPECT imaging in corticobasal syndrome: A peak into the underlying pathology? Acta Neurol Scand 2022; 145:762-769. [PMID: 35307816 DOI: 10.1111/ane.13614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple pathologies may underlie corticobasal syndrome (CBS), including Alzheimer's disease (AD). Dopamine transporter density imaging with Ioflupane 123 I SPECT (DaTscan) may be normal in CBS. No studies to date have examined the relationship between DaTscan status and underlying pathology in CBS. OBJECTIVES The main objective of the study was to test whether a normal DaTscan in CBS patients is indicative of an underlying AD pathology, as determined by cerebrospinal fluid (CSF) biomarkers. METHODS Eighteen CBS patients were included. They were divided into patients with an AD and a non-AD disease pathology, based on their cerebrospinal fluid biochemical profile. A typical AD CSF profile was defined as an increase in total and phosphorylated at threonine 181 tau protein in addition to a decrease in amyloid-beta with 42 amino acids. DaTscan data were compared in these two groups. RESULTS Eight of the 18 CBS patients (44%) had a normal DaTscan. Seven of the 18 CBS patients (39%) had an AD cerebrospinal fluid biochemical profile. Two of seven CBS patients with AD biomarker profile had abnormal DaTscans. Three of 11 CBS patients with a non-AD biomarker profile had normal DaTscans. A normal DaTscan was indicative of AD pathology with suboptimal (~70%) sensitivity and specificity. Semi-quantitative DaTscan analysis did not differentiate between AD from non-AD CSF biomarker profile in CBS. CONCLUSION A normal DaTscan is indicative of AD in CBS, but the sensitivity and specificity of DaTscan as an in vivo marker of AD pathology is suboptimal.
Collapse
Affiliation(s)
- Vasilios C. Constantinides
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
| | - Michail Souvatzoglou
- Nuclear Medicine Division 1st Radiology Department National and Kapodistrian University of Athens Aretaieion Hospital Athens Greece
| | - George P. Paraskevas
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
- 2nd Department of Neurology National and Kapodistrian University of Athens School of Medicine Attikon Hospital Athens Greece
| | - Maria Chalioti
- Nuclear Medicine Division 1st Radiology Department National and Kapodistrian University of Athens Aretaieion Hospital Athens Greece
| | - Fotini Boufidou
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
| | - Leonidas Stefanis
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
| |
Collapse
|
14
|
Evaluation of Alpha-Synuclein Cerebrospinal Fluid Levels in Several Neurological Disorders. J Clin Med 2022; 11:jcm11113139. [PMID: 35683523 PMCID: PMC9181117 DOI: 10.3390/jcm11113139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Alpha-synuclein (α-syn) is a presynaptic neuronal protein that regulates several neuronal functions. In recent decades, the role of α-syn as a biomarker of neurodegenerative diseases has been explored, especially in synucleinopathies. However, only a few studies have assessed its role as biomarker in other neurological disorders. The aim of the study was to evaluate cerebrospinal fluid (CSF) α-syn levels in several neurological disorders; (2) Methods: We measured CSF α-syn levels by a commercial ELISA kit in 158 patients classified in the following group: controls, Alzheimer’s Disease (AD), cerebrovascular diseases, inflammatory central nervous system diseases, other neurological diseases, Parkinson’s Disease (PD), and peripheral neuropathy; (3) Results: Patients with PD showed the lowest and patients with AD the highest levels of CSF α-syn (1372 vs. 2912 pg/mL, respectively, p < 0.001). In AD patients, α-syn levels were significantly associated with tau proteins; (4) Conclusions: α-syn could represent a biomarker of neurodegenerative diseases.
Collapse
|
15
|
The Role of Cerebrospinal Fluid Biomarkers in Dementia and Other Related Neurodegenerative Disorders. Brain Sci 2022; 12:brainsci12050627. [PMID: 35625013 PMCID: PMC9139857 DOI: 10.3390/brainsci12050627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 01/10/2023] Open
|
16
|
Foska A, Tsantzali I, Sideri E, Stefanou MI, Bakola E, Kitsos DK, Zompola C, Bonakis A, Giannopoulos S, Voumvourakis KI, Tsivgoulis G, Paraskevas GP. Classical Cerebrospinal Fluid Biomarkers in Dementia with Lewy Bodies. Medicina (B Aires) 2022; 58:medicina58050612. [PMID: 35630029 PMCID: PMC9144333 DOI: 10.3390/medicina58050612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
The use and interpretation of diagnostic cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders, such as Dementia with Lewy bodies (DLB), represent a clinical challenge. According to the literature, the composition of CSF in DLB patients varies. Some patients present with reduced levels of amyloid, others with full Alzheimer Disease CSF profile (both reduced amyloid and increased phospho-tau) and some with a normal profile. Some patients may present with abnormal levels of a-synuclein. Continuous efforts will be required to establish useful CSF biomarkers for the early diagnosis of DLB. Given the heterogeneity of methods and results between studies, further validation is fundamental before conclusions can be drawn.
Collapse
|
17
|
Metabolites and Biomarker Compounds of Neurodegenerative Diseases in Cerebrospinal Fluid. Metabolites 2022; 12:metabo12040343. [PMID: 35448530 PMCID: PMC9031591 DOI: 10.3390/metabo12040343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022] Open
Abstract
Despite recent advances in diagnostic procedures for neurological disorders, it is still difficult to definitively diagnose some neurodegenerative diseases without neuropathological examination of autopsied brain tissue. As pathological processes in the brain are frequently reflected in the components of cerebrospinal fluid (CSF), CSF samples are sometimes useful for diagnosis. After CSF is secreted from the choroid plexus epithelial cells in the ventricles, some flows in the brain, some is mixed with intracerebral interstitial fluid, and some is excreted through two major drainage pathways, i.e., the intravascular periarterial drainage pathway and the glymphatic system. Accordingly, substances produced by metabolic and pathological processes in the brain may be detectable in CSF. Many papers have reported changes in the concentration of substances in the CSF of patients with metabolic and neurological disorders, some of which can be useful biomarkers of the disorders. In this paper, we show the significance of glucose- and neurotransmitter-related CSF metabolites, considering their transporters in the choroid plexus; summarize the reported candidates of CSF biomarkers for neurodegenerative diseases, including amyloid-β, tau, α-synuclein, microRNAs, and mitochondrial DNA; and evaluate their potential as efficient diagnostic tools.
Collapse
|
18
|
Cerebrospinal Fluid Biomarkers for Alzheimer's Disease in the Era of Disease-Modifying Treatments. Brain Sci 2021; 11:brainsci11101258. [PMID: 34679323 PMCID: PMC8534246 DOI: 10.3390/brainsci11101258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Correct in vivo diagnosis of Alzheimer’s disease (AD) helps to avoid administration of disease-modifying treatments in non-AD patients, and allows the possible use of such treatments in clinically atypical AD patients. Cerebrospinal fluid (CSF) biomarkers offer a tool for AD diagnosis. A reduction in CSF β-amyloid (marker of amyloid plaque burden), although compatible with Alzheimer’s pathological change, may also be observed in other dementing disorders, including vascular cognitive disorders due to subcortical small-vessel disease, dementia with Lewy bodies and normal-pressure hydrocephalus. Thus, for the diagnosis of AD, an abnormal result of CSF β-amyloid may not be sufficient, and an increase in phospho-tau (marker of tangle pathology) is also required in order to confirm AD diagnosis in patients with a typical amnestic presentation and reveal underlying AD in patients with atypical or mixed and diagnostically confusing clinical presentations.
Collapse
|