1
|
Dolfen N, Reverberi S, Op de Beeck H, King BR, Albouy G. The Hippocampus Represents Information about Movements in Their Temporal Position in a Learned Motor Sequence. J Neurosci 2024; 44:e0584242024. [PMID: 39137999 PMCID: PMC11403099 DOI: 10.1523/jneurosci.0584-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Our repertoire of motor skills is filled with sequential movements that need to be performed in a specific order. Here, we used functional magnetic resonance imaging to investigate whether the human hippocampus, a region known to support temporal order in non-motor memory, represents information about the order of sequential motor actions in human participants (both sexes). We also examined such representations in other regions of the motor network (i.e., the premotor cortex, supplementary motor area, anterior superior parietal lobule, and striatum) already known for their critical role in motor sequence learning. Results showed that the hippocampus represents information about movements in their learned temporal position in the sequence, but not about movements or temporal positions in random movement patterns. Other regions of the motor network coded for movements in their learned temporal position, as well as movements and positions in random movement patterns. Importantly, movement coding contributed to sequence learning patterns in primary, supplementary, and premotor cortices but not in striatal and parietal regions. Our findings deepen our understanding of how striatal and cortical regions contribute to motor sequence learning and point to the capacity of the hippocampus to represent movements in their temporal context, an ability possibly explaining its contribution to motor learning.
Collapse
Affiliation(s)
- Nina Dolfen
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Psychology, Columbia University, New York City, New York 10027
| | - Serena Reverberi
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
| | - Hans Op de Beeck
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Brain and Cognition, KU Leuven, 3000 Leuven, Flemish Brabant, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, Utah 84112
| | - Genevieve Albouy
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
2
|
Kwon H, Chinappen DM, Kinard EA, Goodman SK, Huang JF, Berja ED, Walsh KG, Shi W, Manoach DS, Kramer MA, Chu CJ. Impaired sleep-dependent memory consolidation predicted by reduced sleep spindles in Rolandic epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594515. [PMID: 38798414 PMCID: PMC11118409 DOI: 10.1101/2024.05.16.594515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background and Objectives Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in Rolandic epilepsy and related sleep-activated epileptic encephalopathies. We investigate the relationship between sleep spindle deficits and deficient sleep dependent memory consolidation in children with Rolandic epilepsy. Methods In this prospective case-control study, children were trained and tested on a validated probe of memory consolidation, the motor sequence task (MST). Sleep spindles were measured from high-density EEG during a 90-minute nap opportunity between MST training and testing using a validated automated detector. Results Twenty-three children with Rolandic epilepsy (14 with resolved disease), and 19 age- and sex-matched controls were enrolled. Children with active Rolandic epilepsy had decreased memory consolidation compared to control children (p=0.001, mean percentage reduction: 25.7%, 95% CI [10.3, 41.2]%) and compared to children with resolved Rolandic epilepsy (p=0.007, mean percentage reduction: 21.9%, 95% CI [6.2, 37.6]%). Children with active Rolandic epilepsy had decreased sleep spindle rates in the centrotemporal region compared to controls (p=0.008, mean decrease 2.5 spindles/min, 95% CI [0.7, 4.4] spindles/min). Spindle rate positively predicted sleep-dependent memory consolidation (p=0.004, mean MST improvement of 3.9%, 95% CI [1.3, 6.4]%, for each unit increase in spindles per minute). Discussion Children with Rolandic epilepsy have a sleep spindle deficit during the active period of disease which predicts deficits in sleep dependent memory consolidation. This finding provides a mechanism and noninvasive biomarker to aid diagnosis and therapeutic discovery for cognitive dysfunction in Rolandic epilepsy and related sleep activated epilepsy syndromes.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dhinakaran M. Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Elizabeth A. Kinard
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Skyler K. Goodman
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jonathan F. Huang
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Erin D. Berja
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine G. Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dara S. Manoach
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Mark A. Kramer
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Catherine J. Chu
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Höller Y, Eyjólfsdóttir SG, Rusiňák M, Guðmundsson LS, Trinka E. Movement Termination of Slow-Wave Sleep-A Potential Biomarker? Brain Sci 2024; 14:493. [PMID: 38790471 PMCID: PMC11120257 DOI: 10.3390/brainsci14050493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The duration of slow-wave sleep (SWS) is related to the reported sleep quality and to the important variables of mental and physical health. The internal cues to end an episode of SWS are poorly understood. One such internal cue is the initiation of a body movement, which is detectable as electromyographic (EMG) activity in sleep-electroencephalography (EEG). In the present study, we characterized the termination of SWS episodes by movement to explore its potential as a biomarker. To this end, we characterized the relation between the occurrence of SWS termination by movement and individual characteristics (age, sex), SWS duration and spectral content, chronotype, depression, medication, overnight memory performance, and, as a potential neurological application, epilepsy. We analyzed 94 full-night EEG-EMG recordings (75/94 had confirmed epilepsy) in the video-EEG monitoring unit of the EpiCARE Centre Salzburg, Austria. Segments of SWS were counted and rated for their termination by movement or not through the visual inspection of continuous EEG and EMG recordings. Multiple linear regression was used to predict the number of SWS episodes that ended with movement by depression, chronotype, type of epilepsy (focal, generalized, no epilepsy, unclear), medication, gender, total duration of SWS, occurrence of seizures during the night, occurrence of tonic-clonic seizures during the night, and SWS frequency spectra. Furthermore, we assessed whether SWS movement termination was related to overnight memory retention. According to multiple linear regression, patients with overall longer SWS experienced more SWS episodes that ended with movement (t = 5.64; p = 0.001). No other variable was related to the proportion of SWS that ended with movement, including no epilepsy-related variable. A small sample (n = 4) of patients taking Sertraline experienced no SWS that ended with movement, which was significant compared to all other patients (t = 8.00; p < 0.001) and to n = 35 patients who did not take any medication (t = 4.22; p < 0.001). While this result was based on a small subsample and must be interpreted with caution, it warrants replication in a larger sample with and without seizures to further elucidate the role of the movement termination of SWS and its potential to serve as a biomarker for sleep continuity and for medication effects on sleep.
Collapse
Affiliation(s)
- Yvonne Höller
- Faculty of Psychology, University of Akureyri, 600 Akureyri, Iceland; (S.G.E.); (M.R.)
| | | | - Matej Rusiňák
- Faculty of Psychology, University of Akureyri, 600 Akureyri, Iceland; (S.G.E.); (M.R.)
- Faculty of Social Studies, Masaryk University, 601 77 Brno, Czech Republic
| | | | - Eugen Trinka
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Christian-Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, 5020 Salzburg, Austria
- Neuroscience Institute, Christian-Doppler University Hospital, Centre for Cognitive Neuroscience, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Höller Y, Eyjólfsdóttir S, Van Schalkwijk FJ, Trinka E. The effects of slow wave sleep characteristics on semantic, episodic, and procedural memory in people with epilepsy. Front Pharmacol 2024; 15:1374760. [PMID: 38725659 PMCID: PMC11079234 DOI: 10.3389/fphar.2024.1374760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Slow wave sleep (SWS) is highly relevant for verbal and non-verbal/spatial memory in healthy individuals, but also in people with epilepsy. However, contradictory findings exist regarding the effect of seizures on overnight memory retention, particularly relating to procedural and non-verbal memory, and thorough examination of episodic memory retention with ecologically valid tests is missing. This research explores the interaction of SWS duration with epilepsy-relevant factors, as well as the relation of spectral characteristics of SWS on overnight retention of procedural, verbal, and episodic memory. In an epilepsy monitoring unit, epilepsy patients (N = 40) underwent learning, immediate and 12 h delayed testing of memory retention for a fingertapping task (procedural memory), a word-pair task (verbal memory), and an innovative virtual reality task (episodic memory). We used multiple linear regression to examine the impact of SWS duration, spectral characteristics of SWS, seizure occurrence, medication, depression, seizure type, gender, and epilepsy duration on overnight memory retention. Results indicated that none of the candidate variables significantly predicted overnight changes for procedural memory performance. For verbal memory, the occurrence of tonic-clonic seizures negatively impacted memory retention and higher psychoactive medication load showed a tendency for lower verbal memory retention. Episodic memory was significantly impacted by epilepsy duration, displaying a potential nonlinear impact with a longer duration than 10 years negatively affecting memory performance. Higher drug load of anti-seizure medication was by tendency related to better overnight retention of episodic memory. Contrary to expectations longer SWS duration showed a trend towards decreased episodic memory performance. Analyses on associations between memory types and EEG band power during SWS revealed lower alpha-band power in the frontal right region as significant predictor for better episodic memory retention. In conclusion, this research reveals that memory modalities are not equally affected by important epilepsy factors such as duration of epilepsy and medication, as well as SWS spectral characteristics.
Collapse
Affiliation(s)
- Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | | | - Frank Jasper Van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Member of the European Reference Network EpiCARE, Neuroscience Institute, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Salzburg, Austria
| |
Collapse
|
5
|
Eyjólfsdóttir SG, Trinka E, Höller Y. Shorter duration of slow wave sleep is related to symptoms of depression in patients with epilepsy. Epilepsy Behav 2023; 149:109515. [PMID: 37944285 DOI: 10.1016/j.yebeh.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Slow wave sleep duration and spectral abnormalities are related to both epilepsy and depression, but it is unclear how depressive symptoms in patients with epilepsy are affected by slow wave sleep duration and clinical factors, and how the spectral characteristics of slow wave sleep reflect a potential interaction of epilepsy and depression. Long-term video-EEG monitoring was conducted in 51 patients with focal epilepsy, 13 patients with generalized epilepsy, and 9 patients without epilepsy. Slow wave sleep segments were manually marked in the EEG and duration as well as EEG power spectra were extracted. Depressive symptoms were documented with the Beck Depression Inventory (BDI). At least mild depressive symptoms (BDI > 9) were found among 23 patients with focal epilepsy, 5 patients with generalised epilepsy, and 6 patients who had no epilepsy diagnosis. Slow wave sleep duration was shorter for patients with at least mild depressive symptoms (p =.004), independently from epilepsy diagnosis, antiseizure medication, age, and sex. Psychoactive medication was associated with longer slow wave sleep duration (p =.008). Frontal sigma band power (13-15 Hz) during slow wave sleep was higher for patients without epilepsy and without depressive symptoms as compared to patients without depressive symptoms but with focal epilepsy (p =.005). Depressive symptoms affect slow wave sleep duration of patients with epilepsy similarly as in patients without epilepsy. Since reduced slow wave sleep can increase the likelihood of seizure occurrence, these results stress the importance of adequate treatment for patients with epilepsy who experience depressive symptoms.
Collapse
Affiliation(s)
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Austria. Member of the European Reference Network EpiCARE. Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Austria
| | - Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland.
| |
Collapse
|
6
|
Okadome T, Yamaguchi T, Mukaino T, Sakata A, Ogata K, Shigeto H, Isobe N, Uehara T. The effect of interictal epileptic discharges and following spindles on motor sequence learning in epilepsy patients. Front Neurol 2022; 13:979333. [PMID: 36438951 PMCID: PMC9686303 DOI: 10.3389/fneur.2022.979333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 09/05/2023] Open
Abstract
PURPOSE Interictal epileptic discharges (IEDs) are known to affect cognitive function in patients with epilepsy, but the mechanism has not been elucidated. Sleep spindles appearing in synchronization with IEDs were recently demonstrated to impair memory consolidation in rat, but this has not been investigated in humans. On the other hand, the increase of sleep spindles at night after learning is positively correlated with amplified learning effects during sleep for motor sequence learning. In this study, we examined the effects of IEDs and IED-coupled spindles on motor sequence learning in patients with epilepsy, and clarified their pathological significance. MATERIALS AND METHODS Patients undergoing long-term video-electroencephalography (LT-VEEG) at our hospital from June 2019 to November 2021 and age-matched healthy subjects were recruited. Motor sequence learning consisting of a finger-tapping task was performed before bedtime and the next morning, and the improvement rate of performance was defined as the sleep-dependent learning effect. We searched for factors associated with the changes in learning effect observed between the periods of when antiseizure medications (ASMs) were withdrawn for LT-VEEG and when they were returned to usual doses after LT-VEEG. RESULTS Excluding six patients who had epileptic seizures at night after learning, nine patients and 11 healthy subjects were included in the study. In the patient group, there was no significant learning effect when ASMs were withdrawn. The changes in learning effect of the patient group during ASM withdrawal were not correlated with changes in sleep duration or IED density; however, they were significantly negatively correlated with changes in IED-coupled spindle density. CONCLUSION We found that the increase of IED-coupled spindles correlated with the decrease of sleep-dependent learning effects of procedural memory. Pathological IED-coupled sleep spindles could hinder memory consolidation, that is dependent on physiological sleep spindles, resulting in cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Toshiki Okadome
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiko Mukaino
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Sakata
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taira Uehara
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, School of Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|