1
|
Alvarez GM, Jolink TA, West TN, Cardenas MN, Feldman MJ, Cohen JR, Muscatell KA. Differential effects of social versus monetary incentives on inhibitory control under acute inflammation. Brain Behav Immun 2025; 123:950-964. [PMID: 39293694 DOI: 10.1016/j.bbi.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
While the impact of chronic, low-grade inflammation on cognitive functioning is documented in the context of neurodegenerative disease, less is known about the association between acute increases in inflammation and cognitive functioning in daily life. This study investigated how changes in interleukin-6 (IL-6) levels were associated with performance on an inhibitory control task, the go/no-go task. We further examined whether the opportunity to earn different incentive types (social or monetary) and magnitudes (high or low) was associated with differential performance on the task, depending on IL-6 levels. Using a within-participant design, individuals completed an incentivized go/no-go task before and after receiving the annual influenza vaccine. Multilevel logistic regressions were performed on the trial-level data (Nobs = 30,528). For no-go trials, we did not find significant associations in IL-6 reactivity and changes in trial accuracy between sessions. For go trials, we found significant differences in the associations between IL-6 reactivity and changes in accuracy as a function of the incentive condition. Notably, greater IL-6 reactivity was consistently associated with fewer omission errors (i.e., greater accuracy on go trials) on high-magnitude social incentives (i.e., viewing a picture of a close-other) when compared to both low-magnitude social and high-magnitude monetary incentives. Together, these results suggest that mild fluctuations in inflammation might alter the valuation of an incentive, and possibly a shift toward devoting greater attentional resources when a large social incentive is on the line. Overall, this study sheds light on how everyday, low-grade fluctuations in inflammation may influence cognitive abilities essential for daily life and effective inhibitory control.
Collapse
Affiliation(s)
- Gabriella M Alvarez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.
| | - Tatum A Jolink
- Department of Psychology, University of Michigan, Ann Arbor, MI USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Taylor N West
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Megan N Cardenas
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mallory J Feldman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Jessica R Cohen
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Keely A Muscatell
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
2
|
Gigi I, Senatore R, Marcelli A. The onset of motor learning impairments in Parkinson's disease: a computational investigation. Brain Inform 2024; 11:4. [PMID: 38286886 PMCID: PMC11333672 DOI: 10.1186/s40708-023-00215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
The basal ganglia (BG) is part of a basic feedback circuit regulating cortical function, such as voluntary movements control, via their influence on thalamocortical projections. BG disorders, namely Parkinson's disease (PD), characterized by the loss of neurons in the substantia nigra, involve the progressive loss of motor functions. At the present, PD is incurable. Converging evidences suggest the onset of PD-specific pathology prior to the appearance of classical motor signs. This latent phase of neurodegeneration in PD is of particular relevance in developing more effective therapies by intervening at the earliest stages of the disease. Therefore, a key challenge in PD research is to identify and validate markers for the preclinical and prodromal stages of the illness. We propose a mechanistic neurocomputational model of the BG at a mesoscopic scale to investigate the behavior of the simulated neural system after several degrees of lesion of the substantia nigra, with the aim of possibly evaluating which is the smallest lesion compromising motor learning. In other words, we developed a working framework for the analysis of theoretical early-stage PD. While simulations in healthy conditions confirm the key role of dopamine in learning, in pathological conditions the network predicts that there may exist abnormalities of the motor learning process, for physiological alterations in the BG, that do not yet involve the presence of symptoms typical of the clinical diagnosis.
Collapse
Affiliation(s)
- Ilaria Gigi
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Via Beato Pellegrino 28, Padova, 35137, Veneto, Italy.
| | - Rosa Senatore
- Natural Intelligent Technologies Ltd, Piazza Vittorio Emanuele 10, Fisciano, 84084, Campania, Italy
| | - Angelo Marcelli
- Department of Information Engineering, Electrical Engineering, and Applied Mathematics (DIEM), University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Campania, Italy
| |
Collapse
|
3
|
Salomoni SE, Gronau QF, Heathcote A, Matzke D, Hinder MR. Proactive cues facilitate faster action reprogramming, but not stopping, in a response-selective stop signal task. Sci Rep 2023; 13:19564. [PMID: 37949974 PMCID: PMC10638309 DOI: 10.1038/s41598-023-46592-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The ability to stop simple ongoing actions has been extensively studied using the stop signal task, but less is known about inhibition in more complex scenarios. Here we used a task requiring bimanual responses to go stimuli, but selective inhibition of only one of those responses following a stop signal. We assessed how proactive cues affect the nature of both the responding and stopping processes, and the well-documented stopping delay (interference effect) in the continuing action following successful stopping. In this task, estimates of the speed of inhibition based on a simple-stopping model are inappropriate, and have produced inconsistent findings about the effects of proactive control on motor inhibition. We instead used a multi-modal approach, based on improved methods of detecting and interpreting partial electromyographical responses and the recently proposed SIS (simultaneously inhibit and start) model of selective stopping behaviour. Our results provide clear and converging evidence that proactive cues reduce the stopping delay effect by slowing bimanual responses and speeding unimanual responses, with a negligible effect on the speed of the stopping process.
Collapse
Affiliation(s)
- Sauro E Salomoni
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Psychological Sciences, University of Tasmania, Hobart, Australia.
| | - Quentin F Gronau
- School of Psychological Sciences, The University of Newcastle, Newcastle, Australia
| | - Andrew Heathcote
- School of Psychological Sciences, The University of Newcastle, Newcastle, Australia
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Dora Matzke
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Psychological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
4
|
Pan X, Wang Z. Cortical and subcortical contributions to non-motor inhibitory control: an fMRI study. Cereb Cortex 2023; 33:10909-10917. [PMID: 37724423 DOI: 10.1093/cercor/bhad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Inhibition is a core executive cognitive function. However, the neural correlates of non-motor inhibitory control are not well understood. We investigated this question using functional Magnetic Resonance Imaging (fMRI) and a simple Count Go/NoGo task (n = 23), and further explored the causal relationships between activated brain regions. We found that the Count NoGo task activated a distinct pattern in the subcortical basal ganglia, including bilateral ventral anterior/lateral nucleus of thalamus (VA/VL), globus pallidus/putamen (GP/putamen), and subthalamic nucleus (STN). Stepwise regressions and mediation analyses revealed that activations in these region(s) were modulated differently by only 3 cortical regions i.e. the right inferior frontal gyrus/insula (rIFG/insula), along with left IFG/insula, and anterior cingulate cortex/supplementary motor area (ACC/SMA). The activations of bilateral VA/VL were modulated by both rSTN and rIFG/insula (with rGP/putamen as a mediator) independently, and the activation of rGP/putamen was modulated by ACC/SMA, with rIFG/insula as a mediator. Our findings provide the neural correlates of inhibitory control of counting and causal relationships between them, and strongly suggest that both indirect and hyperdirect pathways of the basal ganglia are involved in the Count NoGo condition.
Collapse
Affiliation(s)
- Xin Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Psychological Counseling Center, Shanghai University, Shanghai, China
| | - Zhaoxin Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| |
Collapse
|
5
|
Zhao H, Ge M, Turel O, Bechara A, He Q. Brain modular connectivity interactions can predict proactive inhibition in smokers when facing smoking cues. Addict Biol 2023; 28:e13284. [PMID: 37252878 DOI: 10.1111/adb.13284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Proactive inhibition is a critical ability for smokers who seek to moderate or quit smoking. It allows them to pre-emptively refrain from seeking and using nicotine products, especially when facing salient smoking cues in daily life. Nevertheless, there is limited knowledge on the impact of salient cues on behavioural and neural aspects of proactive inhibition, especially in smokers with nicotine withdrawal. Here, we seek to bridge this gap. To this end, we recruited 26 smokers to complete a stop-signal anticipant task (SSAT) in two separate sessions: once in the neutral cue condition and once in the smoking cue condition. We used graph-based modularity analysis to identify the modular structures of proactive inhibition-related network during the SSAT and further investigated how the interactions within and between these modules could be modulated by different proactive inhibition demands and salient smoking cues. Findings pointed to three stable brain modules involved in the dynamical processes of proactive inhibition: the sensorimotor network (SMN), cognitive control network (CCN) and default-mode network (DMN). With the increase in demands, functional connectivity increased within the SMN, CCN and between SMN-CCN and decreased within the DMN and between SMN-DMN and CCN-DMN. Salient smoking cues disturbed the effective dynamic interactions of brain modules. The profiles for those functional interactions successfully predicted the behavioural performance of proactive inhibition in abstinent smokers. These findings advance our understanding of the neural mechanisms of proactive inhibition from a large-scale network perspective. They can shed light on developing specific interventions for abstinent smokers.
Collapse
Affiliation(s)
- Haichao Zhao
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Mengjiao Ge
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Ofir Turel
- Computing Information Systems, The University of Melbourne, Parkville, Victoria, Australia
- Department of Psychology, and Brain and Creativity Institute, University of Southern California, Los Angeles, California, USA
| | - Antoine Bechara
- Department of Psychology, and Brain and Creativity Institute, University of Southern California, Los Angeles, California, USA
| | - Qinghua He
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
- Collaborative Innovation Center of Assessment toward Basic Education Quality, Southwest University Branch, Chongqing, China
| |
Collapse
|
6
|
Mirabella G. Beyond Reactive Inhibition: Unpacking the Multifaceted Nature of Motor Inhibition. Brain Sci 2023; 13:brainsci13050804. [PMID: 37239277 DOI: 10.3390/brainsci13050804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Inhibition is a pillar of cognitive control, i [...].
Collapse
Affiliation(s)
- Giovanni Mirabella
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
7
|
Al Tannir R, Pautrat A, Baufreton J, Overton PG, Coizet V. The Subthalamic Nucleus: A Hub for Sensory Control via Short Three- Lateral Loop Connections with the Brainstem? Curr Neuropharmacol 2023; 21:22-30. [PMID: 35850655 PMCID: PMC10193764 DOI: 10.2174/1570159x20666220718113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
The subthalamic nucleus (STN) is classically subdivided into sensori-motor, associative and limbic regions, which is consistent with the involvement of this structure in not only motor control, but also in cognitive and emotional tasks. However, the function of the sensory inputs to the STN's sensori-motor territory is comparatively less well explored, although sensory responses have been reported in this structure. There is still a paucity of information regarding the characteristics of that subdivision and its potential functional role in basal ganglia processing and more widely in associated networks. In this perspective paper, we summarize the type of sensory stimuli that have been reported to activate the STN, and describe the complex sensory properties of the STN and its anatomical link to a sensory network involving the brainstem, characterized in our recent work. Analyzing the sensory input to the STN led us to suggest the existence of previously unreported threelateral subcortical loops between the basal ganglia and the brainstem which do not involve the cortex. Anatomically, these loops closely link the STN, the substantia nigra pars reticulata and various structures from the brainstem such as the superior colliculus and the parabrachial nucleus. We also discuss the potential role of the STN in the control of sensory activity in the brainstem and its possible contribution to favoring sensory habituation or sensitization over brainstem structures to optimize the best selection of action at a given time.
Collapse
Affiliation(s)
- Racha Al Tannir
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, 38000 Grenoble, France
| | - Arnaud Pautrat
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, 38000 Grenoble, France
| | - Jérôme Baufreton
- Institute of Neurodegenerative Diseases, Centre National de la Recherche Scientifique, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Paul G. Overton
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom, Grenoble Institute of Neuroscience, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche, France
| | - Veronique Coizet
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, 38000 Grenoble, France
| |
Collapse
|
8
|
Criaud M, Laurencin C, Poisson A, Metereau E, Redouté J, Thobois S, Boulinguez P, Ballanger B. Noradrenaline and Movement Initiation Disorders in Parkinson’s Disease: A Pharmacological Functional MRI Study with Clonidine. Cells 2022; 11:cells11172640. [PMID: 36078048 PMCID: PMC9454805 DOI: 10.3390/cells11172640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Slowness of movement initiation is a cardinal motor feature of Parkinson’s disease (PD) and is not fully reverted by current dopaminergic treatments. This trouble could be due to the dysfunction of executive processes and, in particular, of inhibitory control of response initiation, a function possibly associated with the noradrenergic (NA) system. The implication of NA in the network supporting proactive inhibition remains to be elucidated using pharmacological protocols. For that purpose, we administered 150 μg of clonidine to 15 healthy subjects and 12 parkinsonian patients in a double-blind, randomized, placebo-controlled design. Proactive inhibition was assessed by means of a Go/noGo task, while pre-stimulus brain activity was measured by event-related functional MRI. Acute reduction in noradrenergic transmission induced by clonidine enhanced difficulties initiating movements reflected by an increase in omission errors and modulated the activity of the anterior node of the proactive inhibitory network (dorsomedial prefrontal and anterior cingulate cortices) in PD patients. We conclude that NA contributes to movement initiation by acting on proactive inhibitory control via the α2-adrenoceptor. We suggest that targeting noradrenergic dysfunction may represent a new treatment approach in some of the movement initiation disorders seen in Parkinson’s disease.
Collapse
Affiliation(s)
- Marion Criaud
- Institute of Psychiatry Psychology & Neuroscience, Department Child & Adolescent Psychiatry, Kings College London, London SE24 9QR, UK
| | - Chloé Laurencin
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Alice Poisson
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Elise Metereau
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | | | - Stéphane Thobois
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
- CNRS UMR5229, Institute of Cognitive Science Marc Jeannerod, 69500 Bron, France
| | - Philippe Boulinguez
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
| | - Bénédicte Ballanger
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Correspondence:
| |
Collapse
|
9
|
Inhibitory framing in hypersexual patients with Parkinson's disease. An fMRI pilot study. Exp Brain Res 2022; 240:2097-2107. [PMID: 35763033 PMCID: PMC9288360 DOI: 10.1007/s00221-022-06397-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Hypersexuality in medicated patients with PD is caused by an increased influence of motivational drive areas and a decreased influence of inhibitory control areas due to dopaminergic medication. In this pilot study, we test a newly developed paradigm investigating the influence of dopaminergic medication on brain activation elicited by sexual pictures with and without inhibitory contextual framing. Twenty PD patients with and without hypersexuality were examined with fMRI either OFF or ON standardized dopaminergic medication. The paradigm consisted of a priming phase where either a neutral context or an inhibitory context was presented. This priming phase was either followed by a sexual or a neutral target. Sexual, compared to neutral pictures resulted in a BOLD activation of various brain regions implicated in sexual processing. Hypersexual PD patients showed increased activity compared to PD controls in these regions. There was no relevant effect of medication between the two groups. The inhibitory context elicited less activation in inhibition-related areas in hypersexual PD, but had no influence on the perception of sexual cues. The paradigm partially worked: reactivity of motivational brain areas to sexual cues was increased in hypersexual PD and inhibitory contextual framing lead to decreased activation of inhibitory control areas in PD. We could not find a medication effect and the length of the inhibitory stimulus was not optimal to suppress reactivity to sexual cues. Our data provide new insights into the mechanisms of hypersexuality and warrant a replication with a greater cohort and an optimized stimulus length in the future.
Collapse
|
10
|
Anderson MC, Floresco SB. Prefrontal-hippocampal interactions supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology 2022; 47:180-195. [PMID: 34446831 PMCID: PMC8616908 DOI: 10.1038/s41386-021-01131-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroimaging has revealed robust interactions between the prefrontal cortex and the hippocampus when people stop memory retrieval. Efforts to stop retrieval can arise when people encounter reminders to unpleasant thoughts they prefer not to think about. Retrieval stopping suppresses hippocampal and amygdala activity, especially when cues elicit aversive memory intrusions, via a broad inhibitory control capacity enabling prepotent response suppression. Repeated retrieval stopping reduces intrusions of unpleasant memories and diminishes their affective tone, outcomes resembling those achieved by the extinction of conditioned emotional responses. Despite this resemblance, the role of inhibitory fronto-hippocampal interactions and retrieval stopping broadly in extinction has received little attention. Here we integrate human and animal research on extinction and retrieval stopping. We argue that reconceptualising extinction to integrate mnemonic inhibitory control with learning would yield a greater understanding of extinction's relevance to mental health. We hypothesize that fear extinction spontaneously engages retrieval stopping across species, and that controlled suppression of hippocampal and amygdala activity by the prefrontal cortex reduces fearful thoughts. Moreover, we argue that retrieval stopping recruits extinction circuitry to achieve affect regulation, linking extinction to how humans cope with intrusive thoughts. We discuss novel hypotheses derived from this theoretical synthesis.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Stan B Floresco
- Department of Psychology, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|