1
|
Gao Z, Lv S, Ran X, Wang Y, Xia M, Wang J, Qiu M, Wei Y, Shao Z, Zhao Z, Zhang Y, Zhou X, Yu Y. Influencing factors of corticomuscular coherence in stroke patients. Front Hum Neurosci 2024; 18:1354332. [PMID: 38562230 PMCID: PMC10982423 DOI: 10.3389/fnhum.2024.1354332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Stroke, also known as cerebrovascular accident, is an acute cerebrovascular disease with a high incidence, disability rate, and mortality. It can disrupt the interaction between the cerebral cortex and external muscles. Corticomuscular coherence (CMC) is a common and useful method for studying how the cerebral cortex controls muscle activity. CMC can expose functional connections between the cortex and muscle, reflecting the information flow in the motor system. Afferent feedback related to CMC can reveal these functional connections. This paper aims to investigate the factors influencing CMC in stroke patients and provide a comprehensive summary and analysis of the current research in this area. This paper begins by discussing the impact of stroke and the significance of CMC in stroke patients. It then proceeds to elaborate on the mechanism of CMC and its defining formula. Next, the impacts of various factors on CMC in stroke patients were discussed individually. Lastly, this paper addresses current challenges and future prospects for CMC.
Collapse
Affiliation(s)
- Zhixian Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Shiyang Lv
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yuxi Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengsheng Xia
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Junming Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengyue Qiu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yinping Wei
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zhenpeng Shao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yehong Zhang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xuezhi Zhou
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| |
Collapse
|
2
|
Lamontagne A, Gaunet F. Behavioural Synchronisation between Dogs and Humans: Unveiling Interspecific Motor Resonance? Animals (Basel) 2024; 14:548. [PMID: 38396516 PMCID: PMC10886274 DOI: 10.3390/ani14040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Dogs' behavioural synchronisation with humans is of growing scientific interest. However, studies lack a comprehensive exploration of the neurocognitive foundations of this social cognitive ability. Drawing parallels from the mechanisms underlying behavioural synchronisation in humans, specifically motor resonance and the recruitment of mirror neurons, we hypothesise that dogs' behavioural synchronisation with humans is underpinned by a similar mechanism, namely interspecific motor resonance. Based on a literature review, we argue that dogs possess the prerequisites for motor resonance, and we suggest that interspecific behavioural synchronisation relies on the activation of both human and canine mirror neurons. Furthermore, interspecific behavioural studies highlight certain characteristics of motor resonance, including motor contagion and its social modulators. While these findings strongly suggest the potential existence of interspecific motor resonance, direct proof remains to be established. Our analysis thus paves the way for future research to confirm the existence of interspecific motor resonance as the neurocognitive foundation for interspecific behavioural synchronisation. Unravelling the neurocognitive mechanisms underlying this behavioural adjustment holds profound implications for understanding the evolutionary dynamics of dogs alongside humans and improving the day-to-day management of dog-human interactions.
Collapse
Affiliation(s)
- Angélique Lamontagne
- Centre de Recherche en Psychologie et Neuroscience (UMR 7077), Aix-Marseille University, Centre National de la Recherche Scientifique, 3 Place Victor Hugo, 13331 Marseille, Cedex 03, France
- Association Agir pour la Vie Animale (AVA), 76220 Cuy-Saint-Fiacre, France
| | - Florence Gaunet
- Centre de Recherche en Psychologie et Neuroscience (UMR 7077), Aix-Marseille University, Centre National de la Recherche Scientifique, 3 Place Victor Hugo, 13331 Marseille, Cedex 03, France
| |
Collapse
|
3
|
Agnelli M, Libeccio B, Frisoni MC, Bolzoni F, Temporiti F, Gatti R. Action observation plus motor imagery and somatosensory discrimination training are effective non-motor approaches to improve manual dexterity. J Hand Ther 2024; 37:94-100. [PMID: 37580196 DOI: 10.1016/j.jht.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/22/2023] [Accepted: 05/01/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Action observation plus motor imagery (AOMI) and somatosensory discrimination training (SSDT) represent sensory input-based approaches to train the motor system without necessarily asking subjects to perform active movements. PURPOSE To investigate AOMI and SSDT effects compared to no intervention on manual dexterity in healthy subjects. STUDY DESIGN Randomized controlled study. METHODS Sixty healthy right-handed participants were randomized into AOMI, SSDT or Control (CTRL) groups. AOMI observed video-clips including right-hand dexterity tasks and concurrently performed motor imagery, SSDT performed surfaces recognition and 2-point distance discrimination tasks with the right hand, whereas CTRL underwent no intervention. A blinded physiotherapist assessed participants for manual dexterity using the Purdue Pegboard Test (Right hand-R, Left hand-L, Both hands-B, R+L+B and assembly tasks) at baseline (T0) and training end (T1). A mixed-design Analysis of Variance with Time as within-subject factor and Group as between-subject factor was used to investigate between-group differences over time. RESULTS A Time by Group interaction and Time effect were found for R task, which increased from T0 to T1 in all groups with very large effect sizes for SSDT (d = 1.8, CI95 2.4-1.0, P < .001) and AOMI (d = 1.7, CI95 2.5-1.0, P < .001) and medium effect size for CTRL (d = 0.6, CI95 1.2-0.2, P < .001). Between-group post-hoc comparison for deltas (T1-T0) showed large effect size (d = 1.0, CI95 1.6-0.3, P = .003) in favor of SSDT and medium effect size (d = 0.7, CI95 1.4-0.1, P = .026) in favor of AOMI compared to CTRL. Time effects were found for L, B, R + L + B and assembly tasks (P < .001). CONCLUSIONS AOMI and SSDT induced greater manual dexterity improvements than no intervention. These findings supported the role of visual and somatosensory stimuli in building a motor plan and enhancing the accuracy of hand movements. These non-motor approaches may enhance motor performance in job or hobbies requiring marked manual dexterity.
Collapse
Affiliation(s)
- Miriana Agnelli
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Benedetta Libeccio
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Maria Chiara Frisoni
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Francesco Bolzoni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
4
|
Battaglia S, Fabius JH, Moravkova K, Fracasso A, Borgomaneri S. The Neurobiological Correlates of Gaze Perception in Healthy Individuals and Neurologic Patients. Biomedicines 2022; 10:627. [PMID: 35327431 PMCID: PMC8945205 DOI: 10.3390/biomedicines10030627] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/15/2023] Open
Abstract
The ability to adaptively follow conspecific eye movements is crucial for establishing shared attention and survival. Indeed, in humans, interacting with the gaze direction of others causes the reflexive orienting of attention and the faster object detection of the signaled spatial location. The behavioral evidence of this phenomenon is called gaze-cueing. Although this effect can be conceived as automatic and reflexive, gaze-cueing is often susceptible to context. In fact, gaze-cueing was shown to interact with other factors that characterize facial stimulus, such as the kind of cue that induces attention orienting (i.e., gaze or non-symbolic cues) or the emotional expression conveyed by the gaze cues. Here, we address neuroimaging evidence, investigating the neural bases of gaze-cueing and the perception of gaze direction and how contextual factors interact with the gaze shift of attention. Evidence from neuroimaging, as well as the fields of non-invasive brain stimulation and neurologic patients, highlights the involvement of the amygdala and the superior temporal lobe (especially the superior temporal sulcus (STS)) in gaze perception. However, in this review, we also emphasized the discrepancies of the attempts to characterize the distinct functional roles of the regions in the processing of gaze. Finally, we conclude by presenting the notion of invariant representation and underline its value as a conceptual framework for the future characterization of the perceptual processing of gaze within the STS.
Collapse
Affiliation(s)
- Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
| | - Jasper H. Fabius
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Katarina Moravkova
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|