1
|
Agah E, Mojtabavi H, Behkar A, Heidari A, Ajdari A, Shaka Z, Mousavi SV, Firoozeh N, Tafakhori A, Rezaei N. CSF and blood levels of Neurofilaments, T-Tau, P-Tau, and Abeta-42 in amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Transl Med 2024; 22:953. [PMID: 39434139 PMCID: PMC11492992 DOI: 10.1186/s12967-024-05767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Recent literature suggests that markers of neuroaxonal damage, such as neurofilaments and tau protein, might serve as potential biomarkers for ALS. We conducted this systematic review and meta-analysis study to compare cerebrospinal fluid (CSF) and blood levels of total tau (t-tau), phosphorylated tau (p-tau), amyloid beta peptide 42 (Abeta-42), and neurofilaments in ALS patients and controls. A systematic search of Cochrane Library, PubMed, Embase, and ISI Web of Science was conducted on March 18, 2022, and updated on January 26, 2023. Observational studies that compared the concentrations of neurofilament light chain (NfL), neurofilament heavy chain (NFH), t-tau, p-tau, or Abeta-42 in CSF or peripheral blood of ALS patients and controls were included. Data from relevant studies were independently extracted and screened for quality using a standard tool, by at least two authors. Meta-analysis was conducted when a minimum of 3 studies reported the same biomarker within the same biofluid. A total of 100 studies were eligible for at least one meta-analysis. CSF and blood levels of NfL (standardized mean difference (SMD) [95% CI]; CSF: 1.46 [1.25-1.68]; blood: 1.35 [1.09-1.60]) and NFH (CSF: 1.32 [1.13-1.50], blood: 0.90 [0.58-1.22]) were significantly higher in ALS patients compared with controls. The pooled differences between ALS patients and controls were not significant for CSF t-tau, blood t-tau, and CSF Abeta-42, but CSF p-tau was lower in ALS patients (-0.27 [-0.47- -0.07]). Significantly decreased p-tau/t-tau ratios were found in ALS patients compared with controls (-0.84 [-1.16- -0.53]). Heterogeneity was considerable in most of our meta-analyses. CSF and blood neurofilament levels, as well as the CSF p-tau/t-tau ratio, might be potential candidates for improving ALS diagnosis. Further research is warranted to better understand the underlying mechanisms and the clinical implications of these biomarker alterations.
Collapse
Affiliation(s)
- Elmira Agah
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Helia Mojtabavi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- National Center for Adaptive Neurotechnologies (NCAN), Albany, NY, USA
| | - Atefeh Behkar
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atra Ajdari
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zoha Shaka
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Vahid Mousavi
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Firoozeh
- Department of Radiology, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
López-Carbonero JI, García-Toledo I, Fernández-Hernández L, Bascuñana P, Gil-Moreno MJ, Matías-Guiu JA, Corrochano S. In vivo diagnosis of TDP-43 proteinopathies: in search of biomarkers of clinical use. Transl Neurodegener 2024; 13:29. [PMID: 38831349 PMCID: PMC11149336 DOI: 10.1186/s40035-024-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer's disease, Huntington's disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.
Collapse
Affiliation(s)
- Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Laura Fernández-Hernández
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pablo Bascuñana
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - María J Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Jordi A Matías-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| |
Collapse
|
3
|
Mathioudakis L, Dimovasili C, Bourbouli M, Latsoudis H, Kokosali E, Gouna G, Vogiatzi E, Basta M, Kapetanaki S, Panagiotakis S, Kanterakis A, Boumpas D, Lionis C, Plaitakis A, Simos P, Vgontzas A, Kafetzopoulos D, Zaganas I. Study of Alzheimer's disease- and frontotemporal dementia-associated genes in the Cretan Aging Cohort. Neurobiol Aging 2023; 123:111-128. [PMID: 36117051 DOI: 10.1016/j.neurobiolaging.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
Using exome sequencing, we analyzed 196 participants of the Cretan Aging Cohort (CAC; 95 with Alzheimer's disease [AD], 20 with mild cognitive impairment [MCI], and 81 cognitively normal controls). The APOE ε4 allele was more common in AD patients (23.2%) than in controls (7.4%; p < 0.01) and the PSEN2 p.Arg29His and p.Cys391Arg variants were found in 3 AD and 1 MCI patient, respectively. Also, we found the frontotemporal dementia (FTD)-associated TARDBP gene p.Ile383Val variant in 2 elderly patients diagnosed with AD and in 2 patients, non CAC members, with the amyotrophic lateral sclerosis/FTD phenotype. Furthermore, the p.Ser498Ala variant in the positively selected GLUD2 gene was less frequent in AD patients (2.11%) than in controls (16%; p < 0.01), suggesting a possible protective effect. While the same trend was found in another local replication cohort (n = 406) and in section of the ADNI cohort (n = 808), this finding did not reach statistical significance and therefore it should be considered preliminary. Our results attest to the value of genetic testing to study aged adults with AD phenotype.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Christina Dimovasili
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Mara Bourbouli
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Evgenia Kokosali
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Garyfallia Gouna
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Emmanouella Vogiatzi
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Maria Basta
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Stefania Kapetanaki
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Simeon Panagiotakis
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Alexandros Kanterakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas (ICS-FORTH), Heraklion, Crete, Greece
| | - Dimitrios Boumpas
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Christos Lionis
- University of Crete, Medical School, Clinic of Social and Family Medicine, Heraklion, Crete, Greece
| | - Andreas Plaitakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Panagiotis Simos
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Dimitrios Kafetzopoulos
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Ioannis Zaganas
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece.
| |
Collapse
|
4
|
Novel CSF Biomarkers Tracking Autoimmune Inflammatory and Neurodegenerative Aspects of CNS Diseases. Diagnostics (Basel) 2022; 13:diagnostics13010073. [PMID: 36611365 PMCID: PMC9818715 DOI: 10.3390/diagnostics13010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The accurate diagnosis of neuroinflammatory (NIDs) and neurodegenerative (NDDs) diseases and the stratification of patients into disease subgroups with distinct disease-related characteristics that reflect the underlying pathology represents an unmet clinical need that is of particular interest in the era of emerging disease-modifying therapies (DMT). Proper patient selection for clinical trials and identifying those in the prodromal stages of the diseases or those at high risk will pave the way for precision medicine approaches and halt neuroinflammation and/or neurodegeneration in early stages where this is possible. Towards this direction, novel cerebrospinal fluid (CSF) biomarker candidates were developed to reflect the diseased organ's pathology better. Μisfolded protein accumulation, microglial activation, synaptic dysfunction, and finally, neuronal death are some of the pathophysiological aspects captured by these biomarkers to support proper diagnosis and screening. We also describe advances in the field of molecular biomarkers, including miRNAs and extracellular nucleic acids known as cell-free DNA and mitochondrial DNA molecules. Here we review the most important of these novel CSF biomarkers of NIDs and NDDs, focusing on their involvement in disease development and emphasizing their ability to define homogeneous disease phenotypes and track potential treatment outcomes that can be mirrored in the CSF compartment.
Collapse
|
5
|
Cerebrospinal Fluid Biomarker Profile in TDP-43-Related Genetic Frontotemporal Dementia. J Pers Med 2022; 12:jpm12101747. [PMID: 36294886 PMCID: PMC9605286 DOI: 10.3390/jpm12101747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers, namely total tau, phospho-tau and amyloid beta peptides, have received much attention specifically regarding Alzheimer’s disease (AD), since they can detect the biochemical fingerprint of AD and serve as a diagnostic tool for accurate and early diagnosis during life. In the same way, biomarkers for other neurodegenerative disease pathologies are also needed. We present a case series of six patients with genetic frontotemporal dementia (FTD), with TDP-43 underlying proteinopathy, in an attempt to assess TDP-43 as a novel biomarker alone and in combination with established AD biomarkers for this specific patient group, based on the principles of personalized and precision medicine. Our results indicate that genetic TDP-43-FTD is characterized by increased CSF TPD-43 and increased TDP-43 × τΤ/τP-181 combination. Hence, TDP-43 combined with tau proteins could be a useful tool for the diagnosis of genetic FTD with TDP-43 underling histopathology, supplementing clinical, neuropsychological and imaging data.
Collapse
|