1
|
Liang S, Chen T, Ma J, Ren S, Lu X, Du W. Identification of mild cognitive impairment using multimodal 3D imaging data and graph convolutional networks. Phys Med Biol 2024; 69:235002. [PMID: 39560081 DOI: 10.1088/1361-6560/ad8c94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Objective.Mild cognitive impairment (MCI) is a precursor stage of dementia characterized by mild cognitive decline in one or more cognitive domains, without meeting the criteria for dementia. MCI is considered a prodromal form of Alzheimer's disease (AD). Early identification of MCI is crucial for both intervention and prevention of AD. To accurately identify MCI, a novel multimodal 3D imaging data integration graph convolutional network (GCN) model is designed in this paper.Approach.The proposed model utilizes 3D-VGGNet to extract three-dimensional features from multimodal imaging data (such as structural magnetic resonance imaging and fluorodeoxyglucose positron emission tomography), which are then fused into feature vectors as the node features of a population graph. Non-imaging features of participants are combined with the multimodal imaging data to construct a population sparse graph. Additionally, in order to optimize the connectivity of the graph, we employed the pairwise attribute estimation (PAE) method to compute the edge weights based on non-imaging data, thereby enhancing the effectiveness of the graph structure. Subsequently, a population-based GCN integrates the structural and functional features of different modal images into the features of each participant for MCI classification.Main results.Experiments on the AD Neuroimaging Initiative demonstrated accuracies of 98.57%, 96.03%, and 96.83% for the normal controls (NC)-early MCI (EMCI), NC-late MCI (LMCI), and EMCI-LMCI classification tasks, respectively. The AUC, specificity, sensitivity, and F1-score are also superior to state-of-the-art models, demonstrating the effectiveness of the proposed model. Furthermore, the proposed model is applied to the ABIDE dataset for autism diagnosis, achieving an accuracy of 91.43% and outperforming the state-of-the-art models, indicating excellent generalization capabilities of the proposed model.Significance.This study demonstratesthe proposed model's ability to integrate multimodal imaging data and its excellent ability to recognize MCI. This will help achieve early warning for AD and intelligent diagnosis of other brain neurodegenerative diseases.
Collapse
Affiliation(s)
- Shengbin Liang
- School of Software, Henan University, Kaifeng 475004, People's Republic of China
| | - Tingting Chen
- School of Software, Henan University, Kaifeng 475004, People's Republic of China
| | - Jinfeng Ma
- School of Software, Henan University, Kaifeng 475004, People's Republic of China
| | - Shuanglong Ren
- School of Software, Henan University, Kaifeng 475004, People's Republic of China
| | - Xixi Lu
- School of Software, Henan University, Kaifeng 475004, People's Republic of China
| | - Wencai Du
- Institute for Data Engineering and Science, University of Saint Joseph, Macau 999078, People's Republic of China
| |
Collapse
|
2
|
He C, Hu X, Wang M, Yin X, Zhan M, Li Y, Sun L, Du Y, Chen Z, Wang H, Shao H. Frontiers and hotspots evolution in mild cognitive impairment: a bibliometric analysis of from 2013 to 2023. Front Neurosci 2024; 18:1352129. [PMID: 39221008 PMCID: PMC11361971 DOI: 10.3389/fnins.2024.1352129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/07/2024] [Indexed: 09/04/2024] Open
Abstract
Background Mild cognitive impairment is a heterogeneous syndrome. The heterogeneity of the syndrome and the absence of consensus limited the advancement of MCI. The purpose of our research is to create a visual framework of the last decade, highlight the hotspots of current research, and forecast the most fruitful avenues for future MCI research. Methods We collected all the MCI-related literature published between 1 January 2013, and 24 April 2023, on the "Web of Science." The visual graph was created by the CiteSpace and VOSviewer. The current research hotspots and future research directions are summarized through the analysis of keywords and co-cited literature. Results There are 6,075 articles were included in the final analysis. The number of publications shows an upward trend, especially after 2018. The United States and the University of California System are the most prolific countries and institutions, respectively. Petersen is the author who ranks first in terms of publication volume and influence. Journal of Alzheimer's Disease was the most productive journal. "neuroimaging," "fluid markers," and "predictors" are the focus of current research, and "machine learning," "electroencephalogram," "deep learning," and "blood biomarkers" are potential research directions in the future. Conclusion The cognition of MCI has been continuously evolved and renewed by multiple countries' joint efforts in the past decade. Hotspots for current research are on diagnostic biomarkers, such as fluid markers, neuroimaging, and so on. Future hotspots might be focused on the best prognostic and diagnostic models generated by machine learning and large-scale screening tools such as EEG and blood biomarkers.
Collapse
Affiliation(s)
- Chunying He
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohua Hu
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Muren Wang
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolan Yin
- Department of Gastroenterology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Min Zhan
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Yutong Li
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Linjuan Sun
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Yida Du
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhiyan Chen
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Huan Wang
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haibin Shao
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Liang L, Zhu Z, Su H, Zhao T, Lu Y. Neighborhood structure-guided brain functional networks estimation for mild cognitive impairment identification. PeerJ 2024; 12:e17774. [PMID: 39099649 PMCID: PMC11296305 DOI: 10.7717/peerj.17774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
The adoption and growth of functional magnetic resonance imaging (fMRI) technology, especially through the use of Pearson's correlation (PC) for constructing brain functional networks (BFN), has significantly advanced brain disease diagnostics by uncovering the brain's operational mechanisms and offering biomarkers for early detection. However, the PC always tends to make for a dense BFN, which violates the biological prior. Therefore, in practice, researchers use hard-threshold to remove weak connection edges or introduce l 1-norm as a regularization term to obtain sparse BFNs. However, these approaches neglect the spatial neighborhood information between regions of interest (ROIs), and ROI with closer distances has higher connectivity prospects than ROI with farther distances due to the principle of simple wiring costs in resent studies. Thus, we propose a neighborhood structure-guided BFN estimation method in this article. In detail, we figure the ROIs' Euclidean distances and sort them. Then, we apply the K-nearest neighbor (KNN) to find out the top K neighbors closest to the current ROIs, where each ROI's K neighbors are independent of each other. We establish the connection relationship between the ROIs and these K neighbors and construct the global topology adjacency matrix according to the binary network. Connect ROI nodes with k nearest neighbors using edges to generate an adjacency graph, forming an adjacency matrix. Based on adjacency matrix, PC calculates the correlation coefficient between ROIs connected by edges, and generates the BFN. With the purpose of evaluating the performance of the introduced method, we utilize the estimated BFN for distinguishing individuals with mild cognitive impairment (MCI) from the healthy ones. Experimental outcomes imply this method attains better classification performance than the baselines. Additionally, we compared it with the most commonly used time series methods in deep learning. Results of the performance of K-nearest neighbor-Pearson's correlation (K-PC) has some advantage over deep learning.
Collapse
Affiliation(s)
- Lizhong Liang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zijian Zhu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Su
- Shandong Liaocheng Intelligent Vocational Technical School, Liaocheng, China
| | | | - Yao Lu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Milner T, Brown MRG, Jones C, Leung AWS, Brémault-Phillips S. Multidimensional digital biomarker phenotypes for mild cognitive impairment: considerations for early identification, diagnosis and monitoring. Front Digit Health 2024; 6:1265846. [PMID: 38510280 PMCID: PMC10952843 DOI: 10.3389/fdgth.2024.1265846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
Mild Cognitive Impairment (MCI) poses a challenge for a growing population worldwide. Early identification of risk for and diagnosis of MCI is critical to providing the right interventions at the right time. The paucity of reliable, valid, and scalable methods for predicting, diagnosing, and monitoring MCI with traditional biomarkers is noteworthy. Digital biomarkers hold new promise in understanding MCI. Identifying digital biomarkers specifically for MCI, however, is complex. The biomarker profile for MCI is expected to be multidimensional with multiple phenotypes based on different etiologies. Advanced methodological approaches, such as high-dimensional statistics and deep machine learning, will be needed to build these multidimensional digital biomarker profiles for MCI. Comparing patients to these MCI phenotypes in clinical practice can assist clinicians in better determining etiologies, some of which may be reversible, and developing more precise care plans. Key considerations in developing reliable multidimensional digital biomarker profiles specific to an MCI population are also explored.
Collapse
Affiliation(s)
- Tracy Milner
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Matthew R. G. Brown
- Department of ComputingScience, University of Alberta, Edmonton, AB, Canada
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), University of Alberta, Edmonton, AB, Canada
| | - Chelsea Jones
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), University of Alberta, Edmonton, AB, Canada
| | - Ada W. S. Leung
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Suzette Brémault-Phillips
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), University of Alberta, Edmonton, AB, Canada
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Doğan V, Evliya M, Nesrin Kahyaoglu L, Kılıç V. On-site colorimetric food spoilage monitoring with smartphone embedded machine learning. Talanta 2024; 266:125021. [PMID: 37549568 DOI: 10.1016/j.talanta.2023.125021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Real-time and on-site food spoilage monitoring is still a challenging issue to prevent food poisoning. At the onset of food spoilage, microbial and enzymatic activities lead to the formation of volatile amines. Monitoring of these amines with conventional methods requires sophisticated, costly, labor-intensive, and time consuming analysis. Here, anthocyanins rich red cabbage extract (ARCE) based colorimetric sensing system was developed with the incorporation of embedded machine learning in a smartphone application for real-time food spoilage monitoring. FG-UV-CD100 films were first fabricated by crosslinking ARCE-doped fish gelatin (FG) with carbon dots (CDs) under UV light. The color change of FG-UV-CD100 films with varying ammonia vapor concentrations was captured in different light sources with smartphones of various brands, and a comprehensive dataset was created to train machine learning (ML) classifiers to be robust and adaptable to ambient conditions, resulting in 98.8% classification accuracy. Meanwhile, the ML classifier was embedded into our Android application, SmartFood++, enabling analysis in about 0.1 s without internet access, unlike its counterpart using cloud operation via internet. The proposed system was also tested on a real fish sample with 99.6% accuracy, demonstrating that it has a great advantage as a potent tool for on-site real-time monitoring of food spoilage by non-specialized personnel.
Collapse
Affiliation(s)
- Vakkas Doğan
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Melodi Evliya
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Volkan Kılıç
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey.
| |
Collapse
|
6
|
Song C, Liu T, Shi H, Jiao Z. HCTMFS: A multi-modal feature selection framework with higher-order correlated topological manifold for ESRDaMCI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107905. [PMID: 37931582 DOI: 10.1016/j.cmpb.2023.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND AND OBJECTIVE The diagnosis of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI) mainly relies on objective cognitive assessment, clinical observation, and neuro-psychological evaluation, while only adopting clinical tools often limits the diagnosis accuracy. METHODS We proposed a multi-modal feature selection framework with higher-order correlated topological manifold (HCTMFS) to classify ESRDaMCI patients and identify the discriminative brain regions. It constructed brain structural and functional networks with diffuse kurtosis imaging (DKI) and functional magnetic resonance imaging (fMRI) data, and extracted node efficiency and clustering coefficient from the brain networks to construct multi-modal feature matrices. The topological relationship matrices were constructed to measure the lower-order topological correlation between features. Then the consensus matrices were learned to approximate the topological relationship matrices at different confidence levels and eliminate the noise influence of individual matrices. RESULTS The higher-order topological correlation between features was explored by the Laplacian matrix of the hypergraph, which was calculated through the consensus matrix. The new framework achieved an accuracy rate of 93.56 % for classifying ESRDaMCI patients, and outperformed the existing state-of-the-art methods in terms of sensitivity, specificity, and area under the curve. CONCLUSIONS This study contributes to effectively reflect the functional neural degradation of ESRDaMCI and provide a reference for the diagnosis of ESRDaMCI by selecting discriminative brain regions.
Collapse
Affiliation(s)
- Chaofan Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Huang G, Li R, Bai Q, Alty J. Multimodal learning of clinically accessible tests to aid diagnosis of neurodegenerative disorders: a scoping review. Health Inf Sci Syst 2023; 11:32. [PMID: 37489153 PMCID: PMC10363100 DOI: 10.1007/s13755-023-00231-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
With ageing populations around the world, there is a rapid rise in the number of people with Alzheimer's disease (AD) and Parkinson's disease (PD), the two most common types of neurodegenerative disorders. There is an urgent need to find new ways of aiding early diagnosis of these conditions. Multimodal learning of clinically accessible data is a relatively new approach that holds great potential to support early precise diagnosis. This scoping review follows the PRSIMA guidelines and we analysed 46 papers, comprising 11,750 participants, 3569 with AD, 978 with PD, and 2482 healthy controls; the recency of this topic was highlighted by nearly all papers being published in the last 5 years. It highlights the effectiveness of combining different types of data, such as brain scans, cognitive scores, speech and language, gait, hand and eye movements, and genetic assessments for the early detection of AD and PD. The review also outlines the AI methods and the model used in each study, which includes feature extraction, feature selection, feature fusion, and using multi-source discriminative features for classification. The review identifies knowledge gaps around the need to validate findings and address limitations such as small sample sizes. Applying multimodal learning of clinically accessible tests holds strong potential to aid the development of low-cost, reliable, and non-invasive methods for early detection of AD and PD.
Collapse
Affiliation(s)
- Guan Huang
- School of ICT, University of Tasmania, Sandy Bay, TAS 7005 Australia
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000 Australia
| | - Renjie Li
- School of ICT, University of Tasmania, Sandy Bay, TAS 7005 Australia
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000 Australia
| | - Quan Bai
- School of ICT, University of Tasmania, Sandy Bay, TAS 7005 Australia
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000 Australia
- School of Medicine, University of Tasmania, Hobart, TAS 7000 Australia
- Neurology Department, Royal Hobart Hospital, Hobart, 7000 Australia
| |
Collapse
|
8
|
Fu X, Song C, Zhang R, Shi H, Jiao Z. Multimodal Classification Framework Based on Hypergraph Latent Relation for End-Stage Renal Disease Associated with Mild Cognitive Impairment. Bioengineering (Basel) 2023; 10:958. [PMID: 37627843 PMCID: PMC10451373 DOI: 10.3390/bioengineering10080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Combined arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI) can reveal more comprehensive properties of the spatiotemporal and quantitative properties of brain networks. Imaging markers of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI) will be sought from these properties. The current multimodal classification methods often neglect to collect high-order relationships of brain regions and remove noise from the feature matrix. A multimodal classification framework is proposed to address this issue using hypergraph latent relation (HLR). A brain functional network with hypergraph structural information is constructed by fMRI data. The feature matrix is obtained through graph theory (GT). The cerebral blood flow (CBF) from ASL is selected as the second modal feature matrix. Then, the adaptive similarity matrix is constructed by learning the latent relation between feature matrices. Latent relation adaptive similarity learning (LRAS) is introduced to multi-task feature learning to construct a multimodal feature selection method based on latent relation (LRMFS). The experimental results show that the best classification accuracy (ACC) reaches 88.67%, at least 2.84% better than the state-of-the-art methods. The proposed framework preserves more valuable information between brain regions and reduces noise among feature matrixes. It provides an essential reference value for ESRDaMCI recognition.
Collapse
Affiliation(s)
- Xidong Fu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Chaofan Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Rupu Zhang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| |
Collapse
|
9
|
Song C, Liu T, Wang H, Shi H, Jiao Z. Multi-modal feature selection with self-expression topological manifold for end-stage renal disease associated with mild cognitive impairment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14827-14845. [PMID: 37679161 DOI: 10.3934/mbe.2023664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Effectively selecting discriminative brain regions in multi-modal neuroimages is one of the effective means to reveal the neuropathological mechanism of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI). Existing multi-modal feature selection methods usually depend on the Euclidean distance to measure the similarity between data, which tends to ignore the implied data manifold. A self-expression topological manifold based multi-modal feature selection method (SETMFS) is proposed to address this issue employing self-expression topological manifold. First, a dynamic brain functional network is established using functional magnetic resonance imaging (fMRI), after which the betweenness centrality is extracted. The feature matrix of fMRI is constructed based on this centrality measure. Second, the feature matrix of arterial spin labeling (ASL) is constructed by extracting the cerebral blood flow (CBF). Then, the topological relationship matrices are constructed by calculating the topological relationship between each data point in the two feature matrices to measure the intrinsic similarity between the features, respectively. Subsequently, the graph regularization is utilized to embed the self-expression model into topological manifold learning to identify the linear self-expression of the features. Finally, the selected well-represented feature vectors are fed into a multicore support vector machine (MKSVM) for classification. The experimental results show that the classification performance of SETMFS is significantly superior to several state-of-the-art feature selection methods, especially its classification accuracy reaches 86.10%, which is at least 4.34% higher than other comparable methods. This method fully considers the topological correlation between the multi-modal features and provides a reference for ESRDaMCI auxiliary diagnosis.
Collapse
Affiliation(s)
- Chaofan Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Huan Wang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| |
Collapse
|
10
|
Tang C, Wei M, Sun J, Wang S, Zhang Y. CsAGP: Detecting Alzheimer's disease from multimodal images via dual-transformer with cross-attention and graph pooling. JOURNAL OF KING SAUD UNIVERSITY. COMPUTER AND INFORMATION SCIENCES 2023; 35:101618. [PMID: 38559705 PMCID: PMC7615783 DOI: 10.1016/j.jksuci.2023.101618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a terrible and degenerative disease commonly occurring in the elderly. Early detection can prevent patients from further damage, which is crucial in treating AD. Over the past few decades, it has been demonstrated that neuroimaging can be a critical diagnostic tool for AD, and the feature fusion of different neuroimaging modalities can enhance diagnostic performance. Most previous studies in multimodal feature fusion have only concatenated the high-level features extracted by neural networks from various neuroimaging images simply. However, a major problem of these studies is over-looking the low-level feature interactions between modalities in the feature extraction stage, resulting in suboptimal performance in AD diagnosis. In this paper, we develop a dual-branch vision transformer with cross-attention and graph pooling, namely CsAGP, which enables multi-level feature interactions between the inputs to learn a shared feature representation. Specifically, we first construct a brand-new cross-attention fusion module (CAFM), which processes MRI and PET images by two independent branches of differing computational complexity. These features are fused merely by the cross-attention mechanism to enhance each other. After that, a concise graph pooling algorithm-based Reshape-Pooling-Reshape (RPR) framework is developed for token selection to reduce token redundancy in the proposed model. Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the suggested method obtains 99.04%, 97.43%, 98.57%, and 98.72% accuracy for the classification of AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI, respectively.
Collapse
Affiliation(s)
- Chaosheng Tang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Mingyang Wei
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Junding Sun
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Shuihua Wang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yudong Zhang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | |
Collapse
|
11
|
Qu Z, Yao T, Liu X, Wang G. A Graph Convolutional Network Based on Univariate Neurodegeneration Biomarker for Alzheimer's Disease Diagnosis. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:405-416. [PMID: 37492469 PMCID: PMC10365071 DOI: 10.1109/jtehm.2023.3285723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease that is not easily detectable in the early stage. This study proposed an efficient method of applying a graph convolutional network (GCN) on the early prediction of AD. METHODS We proposed a univariate neurodegeneration biomarker (UNB) based GCN semi-supervised classification framework. We generated UNB by comparing the similarity of individual morphological atrophy pattern and the atrophy pattern of [Formula: see text] AD group according to the brain morphological abnormalities induced by AD. For the GCN semi-supervised classification model, we took the UNBs of individuals as the features of nodes and constructed the weight of edges according to the similarity of phenotypic information between individuals, which explored the essential features of individuals through spectral graph convolution. The attention module was constructed and embedded into the GCN framework, which may refine the input morphological features to highlight the main impact of AD on the cerebral cortex and weaken the instability caused by individual diversities, thereby identifying the significant ROIs affected by AD and improving the classification accuracy. RESULTS We tested the UNB-GCN framework on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The estimated minimum sample sizes were 156, 349 and 423 for the longitudinal [Formula: see text] AD, [Formula: see text] mild cognitive impairment (MCI) and [Formula: see text] cognitively unimpaired (CU) groups, respectively. And the proposed UNB-GCN framework combined with the attention module can effectively improve the classification performance with 93.90% classification accuracy for AD vs. CU and 82.05% for AD vs. MCI on the validation set. CONCLUSION The proposed UNB measures were superior to the conventional volume measures in describing the AD-induced cerebral cortex morphological changes. And the UNB-GCN framework combined with attention module may effectively improve the classification performance between MCI subjects and AD patients. Clinical and Translational Impact Statement: This study aims to predict the early AD patients, so as to help clinicians develop effective interventions to delay the deterioration of AD symptoms.
Collapse
Affiliation(s)
- Zongshuai Qu
- School of Information and Electrical EngineeringLudong UniversityYantai264025China
| | - Tao Yao
- School of Information and Electrical EngineeringLudong UniversityYantai264025China
| | - Xinghui Liu
- Shandong Vheng Data Technology Company Ltd.Yantai264003China
| | - Gang Wang
- School of Ulsan Ship and Ocean CollegeLudong UniversityYantai264025China
| |
Collapse
|
12
|
Chai J, Wu R, Li A, Xue C, Qiang Y, Zhao J, Zhao Q, Yang Q. Classification of mild cognitive impairment based on handwriting dynamics and qEEG. Comput Biol Med 2023; 152:106418. [PMID: 36566627 DOI: 10.1016/j.compbiomed.2022.106418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Subtle changes in fine motor control and quantitative electroencephalography (qEEG) in patients with mild cognitive impairment (MCI) are important in screening for early dementia in primary care populations. In this study, an automated, non-invasive and rapid detection protocol for mild cognitive impairment based on handwriting kinetics and quantitative EEG analysis was proposed, and a classification model based on a dual fusion of feature and decision layers was designed for clinical decision-marking. Seventy-nine volunteers (39 healthy elderly controls and 40 patients with mild cognitive impairment) were recruited for this study, and the handwritten data and the EEG signals were performed using a tablet and MUSE under four designed handwriting tasks. Sixty-eight features were extracted from the EEG and handwriting parameters of each test. Features selected from both models were fused using a late feature fusion strategy with a weighted voting strategy for decision making, and classification accuracy was compared using three different classifiers under handwritten features, EEG features and fused features respectively. The results show that the dual fusion model can further improve the classification accuracy, with the highest classification accuracy for the combined features and the best classification result of 96.3% using SVM with RBF kernel as the base classifier. In addition, this not only supports the greater significance of multimodal data for differentiating MCI, but also tests the feasibility of using the portable EEG headband as a measure of EEG in patients with cognitive impairment.
Collapse
Affiliation(s)
- Jiali Chai
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China.
| | - Ruixuan Wu
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Aoyu Li
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Chen Xue
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China.
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China; Jinzhong College of Information, 030600, Taiyuan, Shanxi, China
| | - Qinghua Zhao
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Qianqian Yang
- Jinzhong College of Information, 030600, Taiyuan, Shanxi, China
| |
Collapse
|
13
|
Li J, Xu H, Yu H, Jiang Z, Zhu L. Multi-modal feature selection with anchor graph for Alzheimer's disease. Front Neurosci 2022; 16:1036244. [DOI: 10.3389/fnins.2022.1036244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
In Alzheimer's disease, the researchers found that if the patients were treated at the early stage of the disease, it could effectively delay the development of the disease. At present, multi-modal feature selection is widely used in the early diagnosis of Alzheimer's disease. However, existing multi-modal feature selection algorithms focus on learning the internal information of multiple modalities. They ignore the relationship between modalities, the importance of each modality and the local structure in the multi-modal data. In this paper, we propose a multi-modal feature selection algorithm with anchor graph for Alzheimer's disease. Specifically, we first use the least square loss and l2,1−norm to obtain the weight of the feature under each modality. Then we embed a modal weight factor into the objective function to obtain the importance of each modality. Finally, we use anchor graph to quickly learn the local structure information in multi-modal data. In addition, we also verify the validity of the proposed algorithm on the published ADNI dataset.
Collapse
|
14
|
Liu X, Shu Y, Yu P, Li H, Duan W, Wei Z, Li K, Xie W, Zeng Y, Peng D. Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis. Front Neurol 2022; 13:1005650. [PMID: 36090863 PMCID: PMC9453022 DOI: 10.3389/fneur.2022.1005650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we aimed to use voxel-level degree centrality (DC) features in combination with machine learning methods to distinguish obstructive sleep apnea (OSA) patients with and without mild cognitive impairment (MCI). Ninety-nine OSA patients were recruited for rs-MRI scanning, including 51 MCI patients and 48 participants with no mild cognitive impairment. Based on the Automated Anatomical Labeling (AAL) brain atlas, the DC features of all participants were calculated and extracted. Ten DC features were screened out by deleting variables with high pin-correlation and minimum absolute contraction and performing selective operator lasso regression. Finally, three machine learning methods were used to establish classification models. The support vector machine method had the best classification efficiency (AUC = 0.78), followed by random forest (AUC = 0.71) and logistic regression (AUC = 0.77). These findings demonstrate an effective machine learning approach for differentiating OSA patients with and without MCI and provide potential neuroimaging evidence for cognitive impairment caused by OSA.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yongqiang Shu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Pengfei Yu
- Big Data Center, the Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Haijun Li
- Department of PET Center, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wenfeng Duan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhipeng Wei
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kunyao Li
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wei Xie
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yaping Zeng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Dechang Peng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
- *Correspondence: Dechang Peng
| |
Collapse
|
15
|
Meng X, Liu J, Fan X, Bian C, Wei Q, Wang Z, Liu W, Jiao Z. Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:911220. [PMID: 35651528 PMCID: PMC9149574 DOI: 10.3389/fnagi.2022.911220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative brain disease, and it is challenging to mine features that distinguish AD and healthy control (HC) from multiple datasets. Brain network modeling technology in AD using single-modal images often lacks supplementary information regarding multi-source resolution and has poor spatiotemporal sensitivity. In this study, we proposed a novel multi-modal LassoNet framework with a neural network for AD-related feature detection and classification. Specifically, data including two modalities of resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were adopted for predicting pathological brain areas related to AD. The results of 10 repeated experiments and validation experiments in three groups prove that our proposed framework outperforms well in classification performance, generalization, and reproducibility. Also, we found discriminative brain regions, such as Hippocampus, Frontal_Inf_Orb_L, Parietal_Sup_L, Putamen_L, Fusiform_R, etc. These discoveries provide a novel method for AD research, and the experimental study demonstrates that the framework will further improve our understanding of the mechanisms underlying the development of AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Junlong Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Xiang Fan
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Chenyuan Bian
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingpeng Wei
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ziwei Wang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
- *Correspondence: Wenjie Liu,
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
- Zhuqing Jiao,
| |
Collapse
|
16
|
Meng X, Wu Y, Liu W, Wang Y, Xu Z, Jiao Z. Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine. Front Neuroinform 2022; 16:856295. [PMID: 35418845 PMCID: PMC8995748 DOI: 10.3389/fninf.2022.856295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative disease of the central nervous system characterized by memory and cognitive dysfunction, as well as abnormal changes in behavior and personality. The research focused on how machine learning classified AD became a recent hotspot. In this study, we proposed a novel voxel-based feature detection framework for AD. Specifically, using 649 voxel-based morphometry (VBM) methods obtained from MRI in Alzheimer’s Disease Neuroimaging Initiative (ADNI), we proposed a feature detection method according to the Random Survey Support Vector Machines (RS-SVM) and combined the research process based on image-, gene-, and pathway-level analysis for AD prediction. Particularly, we constructed 136, 141, and 113 novel voxel-based features for EMCI (early mild cognitive impairment)-HC (healthy control), LMCI (late mild cognitive impairment)-HC, and AD-HC groups, respectively. We applied linear regression model, least absolute shrinkage and selection operator (Lasso), partial least squares (PLS), SVM, and RS-SVM five methods to test and compare the accuracy of these features in these three groups. The prediction accuracy of the AD-HC group using the RS-SVM method was higher than 90%. In addition, we performed functional analysis of the features to explain the biological significance. The experimental results using five machine learning indicate that the identified features are effective for AD and HC classification, the RS-SVM framework has the best classification accuracy, and our strategy can identify important brain regions for AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Yue Wu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ying Wang
- School of Computer Science and Engineering, Changshu Institute of Technology, Changshu, China
| | - Zhe Xu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
- *Correspondence: Zhuqing Jiao,
| |
Collapse
|
17
|
Jiang M, Yan B, Li Y, Zhang J, Li T, Ke W. Image Classification of Alzheimer's Disease Based on External-Attention Mechanism and Fully Convolutional Network. Brain Sci 2022; 12:319. [PMID: 35326275 PMCID: PMC8946519 DOI: 10.3390/brainsci12030319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Automatic and accurate classification of Alzheimer's disease is a challenging and promising task. Fully Convolutional Network (FCN) can classify images at the pixel level. Adding an attention mechanism to the Fully Convolutional Network can effectively improve the classification performance of the model. However, the self-attention mechanism ignores the potential correlation between different samples. Aiming at this problem, we propose a new method for image classification of Alzheimer's disease based on the external-attention mechanism. The external-attention module is added after the fourth convolutional block of the fully convolutional network model. At the same time, the double normalization method of Softmax and L1 norm is introduced to obtain a better classification performance and richer feature information of the disease probability map. The activation function Softmax can increase the degree of fitting of the neural network to the training set, which transforms linearity into nonlinearity, thereby increasing the flexibility of the neural network. The L1 norm can avoid the attention map being affected by especially large (especially small) eigenvalues. The experiments in this paper use 550 three-dimensional MRI images and use five-fold cross-validation. The experimental results show that the proposed image classification method for Alzheimer's disease, combining the external-attention mechanism with double normalization, can effectively improve the classification performance of the model. With this method, the accuracy of the MLP-A model is 92.36%, the accuracy of the MLP-B model is 98.55%, and the accuracy of the fusion model MLP-C is 98.73%. The classification performance of the model is higher than similar models without adding any attention mechanism, and it is better than other comparison methods.
Collapse
Affiliation(s)
- Mingfeng Jiang
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.J.); (B.Y.)
| | - Bin Yan
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.J.); (B.Y.)
| | - Yang Li
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.J.); (B.Y.)
| | - Jucheng Zhang
- Department of Clinical Engineering, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310019, China;
| | - Tieqiang Li
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Wei Ke
- School of Applied Sciences, Macao Polytechnic Institute, Macao SAR 999078, China;
| |
Collapse
|
18
|
Liu W, Cao L, Luo H, Wang Y. Research on Pathogenic Hippocampal Voxel Detection in Alzheimer's Disease Using Clustering Genetic Random Forest. Front Psychiatry 2022; 13:861258. [PMID: 35463515 PMCID: PMC9022175 DOI: 10.3389/fpsyt.2022.861258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurological disease, which is closely associated with hippocampus, and subdividing the hippocampus into voxels can capture subtle signals that are easily missed by region of interest (ROI) methods. Therefore, studying interpretable associations between voxels can better understand the effect of voxel set on the hippocampus and AD. In this study, by analyzing the hippocampal voxel data, we propose a novel method based on clustering genetic random forest to identify the important voxels. Specifically, we divide the left and right hippocampus into voxels to constitute the initial feature set. Moreover, the random forest is constructed using the randomly selected samples and features. The genetic evolution is used to amplify the difference in decision trees and the clustering evolution is applied to generate offspring in genetic evolution. The important voxels are the features that reach the peak classification. The results demonstrate that our method has good classification and stability. Particularly, through biological analysis of the obtained voxel set, we find that they play an important role in AD by affecting the function of the hippocampus. These discoveries demonstrate the contribution of the voxel set to AD.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Luolong Cao
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Haoran Luo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Ying Wang
- School of Computer Science and Engineering, Changshu Institute of Technology, Suzhou, China
| |
Collapse
|
19
|
Meng X, Wu Y, Liang Y, Zhang D, Xu Z, Yang X, Meng L. A Triple-Network Dynamic Connection Study in Alzheimer's Disease. Front Psychiatry 2022; 13:862958. [PMID: 35444581 PMCID: PMC9013774 DOI: 10.3389/fpsyt.2022.862958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) was associated with abnormal organization and function of large-scale brain networks. We applied group independent component analysis (Group ICA) to construct the triple-network consisting of the saliency network (SN), the central executive network (CEN), and the default mode network (DMN) in 25 AD, 60 mild cognitive impairment (MCI) and 60 cognitively normal (CN) subjects. To explore the dynamic functional network connectivity (dFNC), we investigated dynamic time-varying triple-network interactions in subjects using Group ICA analysis based on k-means clustering (GDA-k-means). The mean of brain state-specific network interaction indices (meanNII) in the three groups (AD, MCI, CN) showed significant differences by ANOVA analysis. To verify the robustness of the findings, a support vector machine (SVM) was taken meanNII, gender and age as features to classify. This method obtained accuracy values of 95, 94, and 77% when classifying AD vs. CN, AD vs. MCI, and MCI vs. CN, respectively. In our work, the findings demonstrated that the dynamic characteristics of functional interactions of the triple-networks contributed to studying the underlying pathophysiology of AD. It provided strong evidence for dysregulation of brain dynamics of AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Yue Wu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Yanfeng Liang
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, China
| | - Dongdong Zhang
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, China
| | - Zhe Xu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Xiong Yang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Li Meng
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|