1
|
Frosina G. Advancements in Image-Based Models for High-Grade Gliomas Might Be Accelerated. Cancers (Basel) 2024; 16:1566. [PMID: 38672647 PMCID: PMC11048778 DOI: 10.3390/cancers16081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The first half of 2022 saw the publication of several major research advances in image-based models and artificial intelligence applications to optimize treatment strategies for high-grade gliomas, the deadliest brain tumors. We review them and discuss the barriers that delay their entry into clinical practice; particularly, the small sample size and the heterogeneity of the study designs and methodologies used. We will also write about the poor and late palliation that patients suffering from high-grade glioma can count on at the end of life, as well as the current legislative instruments, with particular reference to Italy. We suggest measures to accelerate the gradual progress in image-based models and end of life care for patients with high-grade glioma.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
2
|
Mărginean L, Filep RC, Suciu BA, Jovin TG, Ștefan PA, Lupean RA, Arbănași EM, Arbănași EM, Opriș DR, Timm AN, Vodă R, Vunvulea V. Textural Analysis of the Hyperdense Artery Sign in Patients with Acute Ischemic Stroke Predicts the Outcome of Thrombectomy. J Cardiovasc Dev Dis 2023; 10:359. [PMID: 37754788 PMCID: PMC10532176 DOI: 10.3390/jcdd10090359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Textural analysis is pivotal in augmenting the diagnosis and outcomes of endovascular procedures for stroke patients. Due to the detection of changes imperceptible to the human eye, this type of analysis can potentially aid in deciding the optimal type of endovascular treatment. We included 40 patients who suffered from acute ischemic stroke caused by large vessel occlusion, and calculated 130 different textural features based on the non-enhanced CT scan using an open-source software (3D Slicer). Using chi-squared and Mann-Whitney tests and receiver operating characteristics analysis, we identified a total of 21 different textural parameters capable of predicting the outcome of thrombectomy (quantified as the mTICI score), with variable sensitivity (50-97.9%) and specificity (64.6-99.4%) rates. In conclusion, CT-based radiomics features are potential factors that can predict the outcome of thrombectomy in patients suffering from acute ischemic stroke, aiding in the decision between aspiration, mechanical, or combined thrombectomy procedure.
Collapse
Affiliation(s)
- Lucian Mărginean
- Radiology and Medical Imaging, Clinical Sciences Department, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Interventional Radiology Department, Târgu Mureș County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Rares Cristian Filep
- Interventional Radiology Department, Târgu Mureș County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Bogdan Andrei Suciu
- Department of Anatomy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Tudor G. Jovin
- Cooper Neurological Institute, Cherry Hill, NJ 08002, USA;
| | - Paul-Andrei Ștefan
- Anatomy and Embryology, Morphological Sciences Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, 400012 Cluj-Napoca, Romania
- Radiology and Imaging Department, County Emergency Hospital, Clinicilor Street, Number 3–5, 400006 Cluj-Napoca, Romania
| | - Roxana-Adelina Lupean
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, Number 4, 400349 Cluj-Napoca, Romania;
| | - Eliza Mihaela Arbănași
- Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Emil Marian Arbănași
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Diana Roxana Opriș
- Emergency Institute for Cardiovascular Diseases and Transplantation (IUBCVT) of Târgu Mureș, 540136 Targu Mures, Romania
| | - Alexander Niklas Timm
- Department of Anatomy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Rareș Vodă
- Department of Anatomy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Vlad Vunvulea
- Department of Anatomy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Radiology and Medical Imaging Laboratory, Târgu Mureș County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| |
Collapse
|
3
|
Hooper GW, Ansari S, Johnson JM, Ginat DT. Advances in the Radiological Evaluation of and Theranostics for Glioblastoma. Cancers (Basel) 2023; 15:4162. [PMID: 37627190 PMCID: PMC10453051 DOI: 10.3390/cancers15164162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Imaging is essential for evaluating patients with glioblastoma. Traditionally a multimodality undertaking, CT, including CT cerebral blood profusion, PET/CT with traditional fluorine-18 fluorodeoxyglucose (18F-FDG), and MRI have been the mainstays for diagnosis and post-therapeutic assessment. However, recent advances in these modalities, in league with the emerging fields of radiomics and theranostics, may prove helpful in improving diagnostic accuracy and treating the disease.
Collapse
Affiliation(s)
| | - Shehbaz Ansari
- Rush University Medical Center, Department of Radiology and Nuclear Medicine, Chicago, IL 60612, USA;
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Daniel T. Ginat
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Muntean DD, Lenghel LM, Ștefan PA, Fodor D, Bădărînză M, Csutak C, Dudea SM, Rusu GM. Radiomic Features Associated with Lymphoma Development in the Parotid Glands of Patients with Primary Sjögren's Syndrome. Cancers (Basel) 2023; 15:cancers15051380. [PMID: 36900173 PMCID: PMC10000076 DOI: 10.3390/cancers15051380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Non-Hodgkin Lymphoma (NHL) represents a severe complication and the main cause of morbidity in patients with primary Sjögren's syndrome (pSS). This study aimed to assess the role of textural analysis (TA) in revealing lymphoma-associated imaging parameters in the parotid gland (PG) parenchyma of patients with pSS. This retrospective study included a total of 36 patients (54.93 ± 13.34 years old; 91.6% females) diagnosed with pSS according to the American College of Rheumatology and the European League Against Rheumatism criteria (24 subjects with pSS and no lymphomatous proliferation; 12 subjects with pSS and NHL development in the PG, confirmed by the histopathological analysis). All subjects underwent MR scanning between January 2018 and October 2022. The coronal STIR PROPELLER sequence was employed to segment PG and perform TA using the MaZda5 software. A total of 65 PGs underwent segmentation and texture feature extraction (48 PGs were included in the pSS control group, and 17 PGs were included in the pSS NHL group). Following parameter reduction techniques, univariate analysis, multivariate regression, and receiver operating characteristics (ROC) analysis, the following TA parameters proved to be independently associated with NHL development in pSS: CH4S6_Sum_Variance and CV4S6_Inverse_Difference_Moment, with an area under ROC of 0.800 and 0.875, respectively. The radiomic model (resulting by combining the two previously independent TA features), presented 94.12% sensitivity and 85.42% specificity in differentiating between the two studied groups, reaching the highest area under ROC of 0.931 for the chosen cutoff value of 1.556. This study suggests the potential role of radiomics in revealing new imaging biomarkers that might serve as useful predictors for lymphoma development in patients with pSS. Further research on multicentric cohorts is warranted to confirm the obtained results and the added benefit of TA in risk stratification for patients with pSS.
Collapse
Affiliation(s)
- Delia Doris Muntean
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lavinia Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (L.M.L.); (P.A.Ș.)
| | - Paul Andrei Ștefan
- Anatomy and Embryology, Morphological Sciences Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090 Vienna, Austria
- Correspondence: (L.M.L.); (P.A.Ș.)
| | - Daniela Fodor
- 2nd Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Maria Bădărînză
- 2nd Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Csaba Csutak
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Sorin Marian Dudea
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Georgeta Mihaela Rusu
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
5
|
AGGN: Attention-based glioma grading network with multi-scale feature extraction and multi-modal information fusion. Comput Biol Med 2023; 152:106457. [PMID: 36571937 DOI: 10.1016/j.compbiomed.2022.106457] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In this paper, a magnetic resonance imaging (MRI) oriented novel attention-based glioma grading network (AGGN) is proposed. By applying the dual-domain attention mechanism, both channel and spatial information can be considered to assign weights, which benefits highlighting the key modalities and locations in the feature maps. Multi-branch convolution and pooling operations are applied in a multi-scale feature extraction module to separately obtain shallow and deep features on each modality, and a multi-modal information fusion module is adopted to sufficiently merge low-level detailed and high-level semantic features, which promotes the synergistic interaction among different modality information. The proposed AGGN is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the proposed AGGN in comparison to other advanced models, which also presents high generalization ability and strong robustness. In addition, even without the manually labeled tumor masks, AGGN can present considerable performance as other state-of-the-art algorithms, which alleviates the excessive reliance on supervised information in the end-to-end learning paradigm.
Collapse
|
6
|
The Diagnostic Value of MRI-Based Radiomic Analysis of Lacrimal Glands in Patients with Sjögren's Syndrome. Int J Mol Sci 2022; 23:ijms231710051. [PMID: 36077442 PMCID: PMC9456288 DOI: 10.3390/ijms231710051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to assess the effectiveness of MRI-based texture features of the lacrimal glands (LG) in augmenting the imaging differentiation between primary Sjögren’s Syndrome (pSS) affected LG and healthy LG, as well as to emphasize the possible importance of radiomics in pSS early-imaging diagnosis. The MRI examinations of 23 patients diagnosed with pSS and 23 healthy controls were retrospectively included. Texture features of both LG were extracted from a coronal post-contrast T1-weighted sequence, using a dedicated software. The ability of texture features to discriminate between healthy and pSS lacrimal glands was performed through univariate, multivariate, and receiver operating characteristics analysis. Two quantitative textural analysis features, RunLengthNonUniformityNormalized (RLNonUN) and Maximum2DDiameterColumn (Max2DDC), were independent predictors of pSS-affected glands (p < 0.001). Their combined ability was able to identify pSS LG with 91.67% sensitivity and 83.33% specificity. MRI-based texture features have the potential to function as quantitative additional criteria that could increase the diagnostic accuracy of pSS-affected LG.
Collapse
|
7
|
CT-Based Radiomic Analysis May Predict Bacteriological Features of Infected Intraperitoneal Fluid Collections after Gastric Cancer Surgery. Healthcare (Basel) 2022; 10:healthcare10071280. [PMID: 35885807 PMCID: PMC9324114 DOI: 10.3390/healthcare10071280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of texture analysis (TA) features to discriminate between different types of infected fluid collections, as seen on computed tomography (CT) images, has never been investigated. The study comprised forty patients who had pathological post-operative fluid collections following gastric cancer surgery and underwent CT scans. Patients were separated into six groups based on advanced microbiological analysis of the fluid: mono bacterial (n = 16)/multiple-bacterial (n = 24)/fungal (n = 14)/non-fungal (n = 26) infection and drug susceptibility tests into: multiple drug-resistance bacteria (n = 23) and non-resistant bacteria (n = 17). Dedicated software was used to extract the collections’ TA parameters. The parameters obtained were used to compare fungal and non-fungal infections, mono-bacterial and multiple-bacterial infections, and multiresistant and non-resistant infections. Univariate and receiver operating characteristic analyses and the calculation of sensitivity (Se) and specificity (Sp) were used to identify the best-suited parameters for distinguishing between the selected groups. TA parameters were able to differentiate between fungal and non-fungal collections (ATeta3, p = 0.02; 55% Se, 100% Sp), mono and multiple-bacterial (CN2D6AngScMom, p = 0.03); 80% Se, 64.29% Sp) and between multiresistant and non-multiresistant collections (CN2D6Contrast, p = 0.04; 100% Se, 50% Sp). CT-based TA can statistically differentiate between different types of infected fluid collections. However, it is unclear which of the fluids’ micro or macroscopic features are reflected by the texture parameters. In addition, this cohort is used as a training cohort for the imaging algorithm, with further validation cohorts being required to confirm the changes detected by the algorithm.
Collapse
|
8
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|
9
|
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers (Basel) 2022; 14:cancers14112731. [PMID: 35681711 PMCID: PMC9179305 DOI: 10.3390/cancers14112731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gliomas can be difficult to discern clinically and radiologically from other brain lesions (either neoplastic or non-neoplastic) since their clinical manifestations as well as preoperative imaging features often overlap and appear misleading. Radiomics could be extremely helpful for non-invasive glioma differential diagnosis (DDx). However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. In this context, we aimed to summarize the current status and quality of radiomic studies concerning glioma DDx in a systematic review. In total, 42 studies were selected and examined in our work. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx. Abstract Radiomics is a promising tool that may increase the value of imaging in differential diagnosis (DDx) of glioma. However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the current status of radiomic studies concerning glioma DDx, also using the radiomics quality score (RQS) to assess the quality of the methodology used in each study. A systematic literature search was performed to identify original articles focused on the use of radiomics for glioma DDx from 2015. Methodological quality was assessed using the RQS tool. Spearman’s correlation (ρ) analysis was performed to explore whether RQS was correlated with journal metrics and the characteristics of the studies. Finally, 42 articles were selected for the systematic qualitative analysis. Selected articles were grouped and summarized in terms of those on DDx between glioma and primary central nervous system lymphoma, those aiming at differentiating glioma from brain metastases, and those based on DDx of glioma and other brain diseases. Median RQS was 8.71 out 36, with a mean RQS of all studies of 24.21%. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx.
Collapse
|
10
|
Yao J, Hagiwara A, Oughourlian TC, Wang C, Raymond C, Pope WB, Salamon N, Lai A, Ji M, Nghiemphu PL, Liau LM, Cloughesy TF, Ellingson BM. Diagnostic and Prognostic Value of pH- and Oxygen-Sensitive Magnetic Resonance Imaging in Glioma: A Retrospective Study. Cancers (Basel) 2022; 14:2520. [PMID: 35626127 PMCID: PMC9139712 DOI: 10.3390/cancers14102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/19/2023] Open
Abstract
Characterization of hypoxia and tissue acidosis could advance the understanding of glioma biology and improve patient management. In this study, we evaluated the ability of a pH- and oxygen-sensitive magnetic resonance imaging (MRI) technique to differentiate glioma genotypes, including isocitrate dehydrogenase (IDH) mutation, 1p/19q co-deletion, and epidermal growth factor receptor (EGFR) amplification, and investigated its prognostic value. A total of 159 adult glioma patients were scanned with pH- and oxygen-sensitive MRI at 3T. We quantified the pH-sensitive measure of magnetization transfer ratio asymmetry (MTRasym) and oxygen-sensitive measure of R2’ within the tumor region-of-interest. IDH mutant gliomas showed significantly lower MTRasym × R2’ (p < 0.001), which differentiated IDH mutation status with sensitivity and specificity of 90.0% and 71.9%. Within IDH mutants, 1p/19q codeletion was associated with lower tumor acidity (p < 0.0001, sensitivity 76.9%, specificity 91.3%), while IDH wild-type, EGFR-amplified gliomas were more hypoxic (R2’ p = 0.024, sensitivity 66.7%, specificity 76.9%). Both R2’ and MTRasym × R2’ were significantly associated with patient overall survival (R2’: p = 0.045; MTRasym × R2’: p = 0.002) and progression-free survival (R2’: p = 0.010; MTRasym × R2’: p < 0.0001), independent of patient age, treatment status, and IDH status. The pH- and oxygen-sensitive MRI is a clinically feasible and potentially valuable imaging technique for distinguishing glioma subtypes and providing additional prognostic value to clinical practice.
Collapse
Affiliation(s)
- Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Talia C. Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Whitney B. Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Albert Lai
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Matthew Ji
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Phioanh L. Nghiemphu
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Linda M. Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA;
| | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
| |
Collapse
|
11
|
Yang G, Yang F, Zhang F, Wang X, Tan Y, Qiao Y, Zhang H. Radiomics Profiling Identifies the Value of CT Features for the Preoperative Evaluation of Lymph Node Metastasis in Papillary Thyroid Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12051119. [PMID: 35626275 PMCID: PMC9139816 DOI: 10.3390/diagnostics12051119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The aim of this study was to identify the increased value of integrating computed tomography (CT) radiomics analysis with the radiologists’ diagnosis and clinical factors to preoperatively diagnose cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) patients. Methods: A total of 178 PTC patients were randomly divided into a training (n = 125) and a test cohort (n = 53) with a 7:3 ratio. A total of 2553 radiomic features were extracted from noncontrast, arterial contrast-enhanced and venous contrast-enhanced CT images of each patient. Principal component analysis (PCA) and Pearson’s correlation coefficient (PCC) were used for feature selection. Logistic regression was employed to build clinical–radiological, radiomics and combined models. A nomogram was developed by combining the radiomics features, CT-reported lymph node status and clinical factors. Results: The radiomics model showed a predictive performance similar to that of the clinical–radiological model, with similar areas under the curve (AUC) and accuracy (ACC). The combined model showed an optimal predictive performance in both the training (AUC, 0.868; ACC, 86.83%) and test cohorts (AUC, 0.878; ACC, 83.02%). Decision curve analysis demonstrated that the combined model has good clinical application value. Conclusions: Embedding CT radiomics into the clinical diagnostic process improved the diagnostic accuracy. The developed nomogram provides a potential noninvasive tool for LNM evaluation in PTC patients.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
| | - Fan Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
| | - Fengyan Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
| | - Xiaochun Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
| | - Ying Qiao
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
- Correspondence: (Y.Q.); (H.Z.)
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
- Correspondence: (Y.Q.); (H.Z.)
| |
Collapse
|
12
|
Comparison of Linear and Convex-Array Transducers in Assessing the Enhancement Characteristics of Suspicious Breast Lesions at Contrast-Enhanced Ultrasound (CEUS). Diagnostics (Basel) 2022; 12:diagnostics12040798. [PMID: 35453846 PMCID: PMC9025659 DOI: 10.3390/diagnostics12040798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to determine the observer agreement in assessing the enhancement pattern of suspicious breast lesions with contrast-enhanced ultrasound (CEUS) using high and low frequency transducers. Methods: This prospective study included 70 patients with suspicious breast lesions detected at mammography and/or ultrasound and classified according to the American College of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) in 4A, 4B, 4C, or 5, who underwent CEUS examinations between October 2020 and August 2021. Results: Participants’ ages ranged from 28 to 83 years (48.5 + 6.36, mean age + SD). We obtained a substantial agreement for the first reader (kappa = 0.614, p < 0.001) and a perfect agreement for the second and third reader (kappa = 1, p < 0.001) between the two transducers for the uptake pattern. A moderate agreement for the second and third reader (kappa = 0.517 and 0.538, respectively, p < 0.001) and only a fair agreement (kappa = 0.320, p < 0.001) in the case of the first reader for the perilesional enhancement was observed. We obtained an excellent inter-observer agreement (Cronbach’s Alpha coefficient = 0.960, p < 0.001) for the degree of enhancement, a good inter-observer agreement for the uptake pattern and perilesional enhancement (Cronbach’s Alpha coefficient = 0.831 and 0.853, respectively, p < 0.001), and a good and acceptable inter-observer agreement for internal homogeneity, perfusion defects and margins of the lesions (Cronbach’s Alpha coefficient = 0.703, 0.703 and 0.792, respectively, p < 0.001) concerning the evaluation of breast lesions with the linear-array transducer. Conclusions: The evaluation of suspicious breast lesions by three experts with high-frequency linear-array transducer and low-frequency convex-array transducer was comparable in terms of uptake pattern and perilesional enhancement. The agreement regarding the evaluation of the degree of enhancement, the internal homogeneity, and the perfusion defects varied between fair and substantial. For all CEUS characteristics, the inter-observer agreement was superior for linear-array transducer, which leads to more a homogeneous and reproducible interpretation.
Collapse
|
13
|
Nowakowski A, Lahijanian Z, Panet-Raymond V, Siegel PM, Petrecca K, Maleki F, Dankner M. Radiomics as an emerging tool in the management of brain metastases. Neurooncol Adv 2022; 4:vdac141. [PMID: 36284932 PMCID: PMC9583687 DOI: 10.1093/noajnl/vdac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall survival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the personalized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circumventing the need for invasive tissue sampling, particularly for patients not eligible for surgical resection.
Collapse
Affiliation(s)
- Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Zubin Lahijanian
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Valerie Panet-Raymond
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|