1
|
Kras K, Osiak-Wicha C, Arciszewski MB. Immunolocalization and quantification of the phoenixin and GPR173 in the gastrointestinal tract of Holstein-Friesian bulls. BMC Vet Res 2025; 21:76. [PMID: 39966825 PMCID: PMC11834677 DOI: 10.1186/s12917-025-04545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Phoenixin (PNX), well-conserved but newly discovered neuropeptide, is involved in various physiological processes, such as food intake, cardiovascular functions, reproductive functions, and stress regulation. PNX is the predicted ligand of GPR173 receptor, but due to its relatively recent discovery in 2013, there is a lack of studies describing the exact mechanism of action of the peptide. In addition, the protein was not been well-studied in specific organs, particularly in the gastrointestinal tract (GIT) of ruminants, including domestic cattle, which are among the world's main livestock animals. Therefore, this study aimed to investigate the immunolocalization and quantification of PNX and GPR173 in the GIT of domestic cattle. Study material, including GIT sections of two age groups, calves and adult bulls (n = 6 per group), was obtained from a slaughterhouse. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical (IHC) analyses were performed. Analyses revealed low levels of PNX in the GIT of both age groups, with localization restricted to epithelial cells across all examined GIT segments, with statistically significant differences between age groups and GIT segments, which may result from the delayed development of forestomachs in calves. On the other hand, GPR173 levels were shown to be higher than those of PNX and to have a wider distribution extending beyond the epithelium to the blood vessels wall and the intrinsic nervous system. This may suggests that PNX is not the only ligand for this receptor. Overall, the results may suggest that both PNX and GPR173 could possibly play protective roles related to the immune response, regulate digestive and absorptive functions, and due to receptor presence in nerve fibres, may play a role in regulating GIT secretion and motility. These findings could potentially facilitate further research into the therapeutic potential of targeting PNX and GPR173 in managing gastrointestinal disorders in domestic cattle and other species, and can also be further used for experimental, clinical or pharmacological research into the treatment of eating disorders not only in humans, but also in farm animals.
Collapse
Affiliation(s)
- Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950, Lublin, Poland.
| | - Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950, Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950, Lublin, Poland
| |
Collapse
|
2
|
McIlwraith EK, Loganathan N, Mak KWY, He W, Belsham DD. Phoenixin knockout mice show no impairment in fertility or differences in metabolic response to a high-fat diet, but exhibit behavioral differences in an open field test. J Neuroendocrinol 2024; 36:e13398. [PMID: 38733120 DOI: 10.1111/jne.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Phoenixin (PNX) is a conserved secreted peptide that was identified 10 years ago with numerous studies published on its pleiotropic functions. PNX is associated with estrous cycle length, protection from a high-fat diet, and reduction of anxiety behavior. However, no study had yet evaluated the impact of deleting PNX in the whole animal. We sought to evaluate a mouse model lacking the PNX parent gene, small integral membrane protein 20 (Smim20), and the resulting effect on reproduction, energy homeostasis, and anxiety. We found that the Smim20 knockout mice had normal fertility and estrous cycle lengths. Consistent with normal fertility, the hypothalamii of the knockout mice showed no changes in the levels of reproduction-related genes, but the male mice had some changes in energy homeostasis-related genes, such as melanocortin receptor 4 (Mc4r). When placed on a high-fat diet, the wildtype and knockout mice responded similarly, but the male heterozygous mice gained slightly less weight. When placed in an open field test box, the female knockout mice traveled less distance in the outer zone, indicating alterations in anxiety or locomotor behavior. In summary, the homozygous knockout of PNX did not alter fertility and modestly alters a few neuroendocrine genes in response to a high-fat diet, especially in the female mice. However, it altered the behavior of mice in an open field test. PNX therefore may not be crucial for reproductive function or weight, however, we cannot rule out possible compensatory mechanisms in the knockout model. Understanding the role of PNX in physiology may ultimately lead to an enhanced understanding of neuroendocrine mechanisms involving this enigmatic peptide.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Neruja Loganathan
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly W Y Mak
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wenyuan He
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Caria A. Hypothalamus, Neuropeptides and Socioemotional Behavior. Brain Sci 2023; 13:1303. [PMID: 37759904 PMCID: PMC10526506 DOI: 10.3390/brainsci13091303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A large body of evidence from old stimulation and lesion studies on the hypothalamus in animals and humans demonstrates that this subcortical area significantly affects socioemotional behavior [...].
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Sciences, University of Trento, 38068 Rovereto, Italy
| |
Collapse
|
4
|
Friedrich T, Stengel A. Current state of phoenixin-the implications of the pleiotropic peptide in stress and its potential as a therapeutic target. Front Pharmacol 2023; 14:1076800. [PMID: 36860304 PMCID: PMC9968724 DOI: 10.3389/fphar.2023.1076800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
Phoenixin is a pleiotropic peptide, whose known functions have broadened significantly over the last decade. Initially first described as a reproductive peptide in 2013, phoenixin is now recognized as being implicated in hypertension, neuroinflammation, pruritus, food intake, anxiety as well as stress. Due to its wide field of involvement, an interaction with physiological as well as psychological control loops has been speculated. It has shown to be both able to actively reduce anxiety as well as being influenced by external stressors. Initial rodent models have shown that central administration of phoenixin alters the behavior of the subjects when confronted with stress-inducing situations, proposing an interaction with the perception and processing of stress and anxiety. Although the research on phoenixin is still in its infancy, there are several promising insights into its functionality, which might prove to be of value in the pharmacological treatment of several psychiatric and psychosomatic illnesses such as anorexia nervosa, post-traumatic stress disorder as well as the increasingly prevalent stress-related illnesses of burnout and depression. In this review, we aim to provide an overview of the current state of knowledge of phoenixin, its interactions with physiological processes as well as focus on the recent developments in stress response and the possible novel treatment options this might entail.
Collapse
Affiliation(s)
- T. Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - A. Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany,*Correspondence: A. Stengel,
| |
Collapse
|
5
|
Friedrich T, Goebel-Stengel M, Schalla MA, Kobelt P, Rose M, Stengel A. Abdominal surgery increases activity in several phoenixin immunoreactive nuclei. Neurosci Lett 2023; 792:136938. [PMID: 36341925 DOI: 10.1016/j.neulet.2022.136938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Research on the peptide phoenixin has increased in recent years and greatly widened the known scope of its functions since its discovery in 2013. Involvement of phoenixin has since been shown in anxiety, food intake, reproduction as well as emotional and immunological stress. To further evaluate its involvement in stress reactions, this study aims to investigate the effects of abdominal surgery, a well-established physical stressor, on the activity of phoenixin-immunoreactive brain nuclei. METHODS Male Sprague-Dawley rats (n = 6/group) were subjected to either an abdominal surgery stress protocol or a sham operation. Animals in the verum group were anesthetized, the abdominal cavity opened and the cecum palpated, followed by closing of the abdomen and recovery. Sham operated animals only received inhalation anesthesia and time for recovery. All animals were subsequently sacrificed and brains processed and evaluated for c-Fos activity as well as phoenixin density. RESULTS Compared to control, abdominal surgery significantly increased c-Fos activity in the paraventricular nucleus (PVN, 6.4-fold, p < 0.001), the medial part of the nucleus of the solitary tract (mNTS, 3.8-fold, p < 0.001), raphe pallidus (RPa, 3.6-fold, p < 0.001), supraoptic nucleus (SON, 3.2-fold, p < 0.001), ventrolateral medulla (VLM, also called A1C1, 3.0-fold, p < 0.001), dorsal motor nucleus of vagus (DMN, 2.9-fold, p < 0.001), locus coeruleus (LC, 1.8-fold, p < 0.01) and Edinger-Westphal nucleus (EW, 1.6-fold, p < 0.05), while not significantly altering c-Fos activity in the amygdala (CeM, 1.3-fold, p > 0.05). Phoenixin immunoreactivity was not significantly affected by abdominal surgery (p > 0.05). CONCLUSION The observed abdominal surgery-related increase in activity in phoenixin immunoreactive nuclei compared to sham surgery controls supports the hypothesis of an involvement of phoenixin in stress reactions. Interestingly, various psychological and physical stressors lead to specific changes in activity and immunoreactivity in phoenixin-containing nuclei, giving rise to a stressor-specific involvement of phoenixin.
Collapse
Affiliation(s)
- Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, Helios Kliniken GmbH, Rottweil, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Martha Anna Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Martinez-Orengo N, Tahmazian S, Lai J, Wang Z, Sinharay S, Schreiber-Stainthorp W, Basuli F, Maric D, Reid W, Shah S, Hammoud DA. Assessing organ-level immunoreactivity in a rat model of sepsis using TSPO PET imaging. Front Immunol 2022; 13:1010263. [PMID: 36439175 PMCID: PMC9685400 DOI: 10.3389/fimmu.2022.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
There is current need for new approaches to assess/measure organ-level immunoreactivity and ensuing dysfunction in systemic inflammatory response syndrome (SIRS) and sepsis, in order to protect or recover organ function. Using a rat model of systemic sterile inflammatory shock (intravenous LPS administration), we performed PET imaging with a translocator protein (TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive changes in the brain and peripheral organs. In vivo dynamic PET/CT scans showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values (SUVmean) at equilibrium were significantly higher in those organs compared to baseline. Changes in spleen [18F]DPA-714 binding were variable but generally decreased after LPS. SUVmean values in all organs, except the spleen, positively correlated with several serum cytokines/chemokines. In vitro measures of TSPO expression and immunofluorescent staining validated the imaging results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model of systemic sterile inflammatory shock, along with in vitro measures of TSPO expression, showed brain, liver and lung inflammation, spleen monocytic efflux/lymphocytic activation and suggested increased bone marrow hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS and sepsis-associated organ-level immunoreactivity and assess the effectiveness of therapeutic and preventative approaches for associated organ failures, in vivo.
Collapse
Affiliation(s)
- Neysha Martinez-Orengo
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sarine Tahmazian
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - William Schreiber-Stainthorp
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - William Reid
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Dima A. Hammoud,
| |
Collapse
|
7
|
Dyatlova AS, Kochenda OL, Lavrov NV, Korneva EA. c-Fos Expression in Rat Medulla Oblongata after Subdiaphragmatic Vagotomy and Various Antigens Administration. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022; 9:956500. [PMID: 36090042 PMCID: PMC9456248 DOI: 10.3389/fmolb.2022.956500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Phoenixin is a newly discovered neuropeptide generated from small integral membrane protein 20. Phoenixin is a ligand for the G protein-coupled receptor 173 (GPR173) and has been detected in central and peripheral tissues of human, rats, mice, bovine, and zebrafish. It was initially involved in regulating reproductive function by stimulating the luteinizing hormone release from pituitary cells by increasing the level of gonadotropin-releasing hormone. Recently, many functions of phoenixin have been generalized, including regulation of food intake, memory, Alzheimer’s disease, anxiety, inflammation, neuronal and microglial activity, energy metabolism and body fluid balance, cardiovascular function, and endocrine activity. In addition, the interaction between phoenixin and nesfatin-1 have been revealed. The present article summarized the latest research progress on physiological function of phoenixin, suggesting that it is a potential target for novel drug development and clinical application.
Collapse
Affiliation(s)
- Han Liang
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
9
|
Kostrzewa-Nowak D, Nowak R, Kubaszewska J, Gos W. Interdisciplinary Approach to Biological and Health Implications in Selected Professional Competences. Brain Sci 2022; 12:brainsci12020236. [PMID: 35203999 PMCID: PMC8870650 DOI: 10.3390/brainsci12020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023] Open
Abstract
Everyday life’s hygiene and professional realities, especially in economically developed countries, indicate the need to modify the standards of pro-health programs as well as modern hygiene and work ergonomics programs. These observations are based on the problem of premature death caused by civilization diseases. The biological mechanisms associated with financial risk susceptibility are well described, but there is little data explaining the biological basis of neuroaccounting. Therefore, the aim of the study was to present relationships between personality traits, cognitive competences and biological factors shaping behavioral conditions in a multidisciplinary aspect. This critical review paper is an attempt to compile biological and psychological factors influencing the development of professional competences, especially decent in the area of accounting and finance. We analyzed existing literature from wide range of scientific disciplines (including economics, psychology, behavioral genetics) to create background to pursuit multidisciplinary research models in the field of neuroaccounting. This would help in pointing the best genetically based behavioral profile of future successful financial and accounting specialists.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
- Correspondence:
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Joanna Kubaszewska
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Waldemar Gos
- Institute of Economy and Finance, University of Szczecin, 64 Mickiewicza St., 71-101 Szczecin, Poland;
| |
Collapse
|