1
|
Yang Z, Lange F, Xia Y, Chertavian C, Cabolis K, Sajic M, Werring DJ, Tachtsidis I, Smith KJ. Nimodipine Protects Vascular and Cognitive Function in an Animal Model of Cerebral Small Vessel Disease. Stroke 2024; 55:1914-1922. [PMID: 38860370 PMCID: PMC11251505 DOI: 10.1161/strokeaha.124.047154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cerebral small vessel disease is a common cause of vascular cognitive impairment and dementia. There is an urgent need for preventative treatments for vascular cognitive impairment and dementia, and reducing vascular dysfunction may provide a therapeutic route. Here, we investigate whether the chronic administration of nimodipine, a central nervous system-selective dihydropyridine calcium channel blocking agent, protects vascular, metabolic, and cognitive function in an animal model of cerebral small vessel disease, the spontaneously hypertensive stroke-prone rat. METHODS Male spontaneously hypertensive stroke-prone rats were randomly allocated to receive either a placebo (n=24) or nimodipine (n=24) diet between 3 and 6 months of age. Animals were examined daily for any neurological deficits, and vascular function was assessed in terms of neurovascular and neurometabolic coupling at 3 and 6 months of age, and cerebrovascular reactivity at 6 months of age. Cognitive function was evaluated using the novel object recognition test at 6 months of age. RESULTS Six untreated control animals were terminated prematurely due to strokes, including one due to seizure, but no treated animals experienced strokes and so had a higher survival (P=0.0088). Vascular function was significantly impaired with disease progression, but nimodipine treatment partially preserved neurovascular coupling and neurometabolic coupling, indicated by larger (P<0.001) and more prompt responses (P<0.01), and less habituation upon repeated stimulation (P<0.01). Also, animals treated with nimodipine showed greater cerebrovascular reactivity, indicated by larger dilation of arterioles (P=0.015) and an increase in blood flow velocity (P=0.001). This protection of vascular and metabolic function achieved by nimodipine treatment was associated with better cognitive function (P<0.001) in the treated animals. CONCLUSIONS Chronic treatment with nimodipine protects from strokes, and vascular and cognitive deficits in spontaneously hypertensive stroke-prone rat. Nimodipine may provide an effective preventive treatment for stroke and cognitive decline in cerebral small vessel disease.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering (F.L., I.T.), University College London, United Kingdom
| | - Yiqing Xia
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Casey Chertavian
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Katerina Cabolis
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Marija Sajic
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - David J. Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology (D.J.W.), University College London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering (F.L., I.T.), University College London, United Kingdom
| | - Kenneth J. Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| |
Collapse
|
2
|
Impact of the Voltage-Gated Calcium Channel Antagonist Nimodipine on the Development of Oligodendrocyte Precursor Cells. Int J Mol Sci 2023; 24:ijms24043716. [PMID: 36835129 PMCID: PMC9960570 DOI: 10.3390/ijms24043716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While most of the current treatment strategies focus on immune cell regulation, except for the drug siponimod, there is no therapeutic intervention that primarily aims at neuroprotection and remyelination. Recently, nimodipine showed a beneficial and remyelinating effect in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Nimodipine also positively affected astrocytes, neurons, and mature oligodendrocytes. Here we investigated the effects of nimodipine, an L-type voltage-gated calcium channel antagonist, on the expression profile of myelin genes and proteins in the oligodendrocyte precursor cell (OPC) line Oli-Neu and in primary OPCs. Our data indicate that nimodipine does not have any effect on myelin-related gene and protein expression. Furthermore, nimodipine treatment did not result in any morphological changes in these cells. However, RNA sequencing and bioinformatic analyses identified potential micro (mi)RNA that could support myelination after nimodipine treatment compared to a dimethyl sulfoxide (DMSO) control. Additionally, we treated zebrafish with nimodipine and observed a significant increase in the number of mature oligodendrocytes (* p≤ 0.05). Taken together, nimodipine seems to have different positive effects on OPCs and mature oligodendrocytes.
Collapse
|